Введение новой генетической информации в клетки бактерий




 

Бактерии могут приобретать новый генетический материал несколькими способами. Это: 1) трансформация, при которой в клетки проникают молекулы ДНК, добавленные в культуральную среду;

2) конъюгация, в процессе которой ДНК непосредственно переносится от одной клетки к другой;

3) опосредуемая бактериофагами трансдукция, при которой новая генетическая информация вводится в клетку с частицей бактериофага. Независимо от способа попадания в реципиентную клетку донорная ДНК рекомбинирует с гомологичными участками или специфическими сайтами в геноме реципиентного организма или сохраняется в виде автономной мини-хромосомы, изменяя таким образом генотип хозяина.

Трансформация бактерий

Трансформация, т.е. изменение генотипа клетки путем внесения в нее молекул ДНК из культуральной среды, была первым из способов введения новых генов в клетки бактерий. Это послужило также первым доказательством роли ДНК как носителя генетической информации. Если в клетки организма с определенным генетическим нарушением ввести ДНК, выделенную из нормальных клеток, то у этого организма нередко восстанавливаются утраченные функции. Такая трансформация является обычно наследственной и стабильной, поскольку в ее основе лежит рекомбинация между функциональным геном донорной ДНК и дефектным геном реципиента. Однако осуществляемая с помощью ДНК трансформация оказалась полезной только при изучении молекулярной генетики прокариот. В других случаях возможности трансформации ограничивались трудностями выявления трансформирующего гена, что делало нереальным определение его структуры. Тем не менее принцип трансформации нашел применение в другой области. Например, получение трансформированных клеток является важным этапом во многих экспериментах с рекомбинантными молекулами ДНК. Термин «трансформация» используется в молекулярной биологии эукариот для обозначения стабильного изменения генотипа и фенотипа клетки.

Конъюгация

При конъюгации осуществляется прямой перенос ДНК из одной клетки в другую при их контактировании. В тех случаях, когда конъюгация происходит между определенными штаммами E. coli, один из них выполняет функции донора, другой – реципиента. Эти эксперименты впервые показали, что все гены Е. coli расположены на одной кольцевой молекуле ДНК. Сравнивая время, необходимое для переноса различных генов во время конъюгации, можно построить генетическую карту хромосомы Е. coli, т.е. установить порядок следования хромосомных генов.

Трансдукция

Охарактеризованы два типа трансдукции, осуществляемой с помощью бактериофагов, общая и специфическая. При общей трансдукции фаговые частицы, содержащие сегменты ДНК клетки-хозяина, переносят относительно протяженные участки геномной ДНК от одной бактериальной клетки к другой. Трансдуцирующие фаговые частицы образуются в ходе определенных инфекционных процессов, когда ДНК клетки эффективно деградирует и фрагменты, по размеру примерно соответствующие фаговому геному, случайно упаковываются в зрелые частицы бактериофага. В результате последующего инфицирования клеток бактерий популяцией фаговых частиц, содержащей трансдуцирующие фаги, происходит передача ДНК донорных клеток этим инфицируемым клеткам. Рекомбинация между введенными фрагментами донорной ДНК и ДНК клетки-реципиента приводит к изменению генотипа последней. Каждая трансдуцирующая фаговая частица обычно содержит только один случайный фрагмент исходной донорной хромосомы. Вероятность включения в такую частицу любой части этого генома примерно одинакова. Однако благодаря довольно большому размеру трансдуци-руемых сегментов ДНК обычно реципиентная клетка приобретает за один акт трансдукции целую группу генов. В результате гены, тесно сцепленные друг с другом в хромосоме донора, с высокой частотой котрансдуцируются, тогда как гены, удаленные друг от друга, трансдуцируются независимо. Определение частоты котрансдукции генов помогает уточнить генетические карты, позволяя оценить относительные расстояния между тесно сцепленными генами.

Трансдукция второго типа, специфическая, свойственна бактериофагам, инфекционный цикл которых прерывается в результате включения генома вируса в специфический хромосомный локус ДНК инфицированной клетки. Бактерии, содержащие такие интегрированные фаговые геномы, получили название лизогенных. Они несут вирусные геномы как наследственные элементы в своих собственных хромосомах. В лизогенной клетке вирусные и клеточные геномы реплицируются как единое целое и являются взаимно совместимыми. Интеграция фагового генома с геномом клетки-хозяина лишает фаг возможности вызывать гибель клетки и продуцировать инфекционное потомство. По этой причине бактериофаг, способный лизогенизировать, в отличие от вирулентного фага получил название умеренного. При определенных условиях – индукции – лизогенное состояние прерывается и вирусный геном вырезается из хромосомы клетки-хозяина. Он реплицируется, образует множество вирусных частиц и убивает клетку. Обычно вырезание вирусного генома происходит очень точно, и образующийся фаг содержит вирусный геном, полностью соответствующий исходному. Иногда, однако, фаговый геном вырезается неправильно и в дочерние фаговые геномы включаются хромосомные гены, прилегавшие к интегрированному вирусному геному. Эти гены включаются вместо некоторых вирусных генов. Во время следующего цикла инфекции гены клетки-донора переходят вместе с фаговыми генами в реципиентные клетки. После включения ДНК трансдуцирующего фага в геном реципиента клетка приобретает наряду с фаговыми генами генетическую информацию предыдущего хозяина фага. Таким образом, при специфической трансдукции фаг служит вектором для переноса генов из одной клетки в другую. С помощью этого механизма трансдуцируются только те хромосомные гены клетки-хозяина, которые тесно сцеплены с сайтом интеграции вирусного генома.

Поскольку различные умеренные фаги встраиваются в разные хромосомные сайты, при их неправильном вырезании образуются фаги, которые трансдуцируют разные хромосомные гены. Так, фаги X трансдуцируют гены, ответственные за метаболизм галактозы, или гены, контролирующие синтез биотина, а фаги ф80 – различное число генов, кодирующих ферменты биосинтеза триптофана. Были разработаны определенные генетические приемы, способствующие приобретению этими и другими фагами различных генов E. coli или генов родственных организмов. Та же стратегия с небольшими модификациями позволяет получить трансдуцирующие фаги, содержащие мутантные бактериальные гены. Такие трансдуцирующие фаги легко идентифицировать, размножить и очистить, что позволяет получать значительные количества аллелей дикого или мутантного генов Е. coli в высокоочищенном виде.

Обогащение бактериальными генами, сопровождающее их включение в геном трансдуцирующих фагов, имеет важные последствия. Рассмотрим, например, ген Е. coli, кодирующий фермент в-га-лактозидазу. Этот белок состоит из идентичных полипептидных цепей длиной 1173 аминокислотных остатка; следовательно, ген, кодирующий этот полипептид, содержит около 3600 пар нуклеотидов. Ген в-галактозидазы составляет одну тысячную генома E. coli, но в геноме трансдуцирующего вируса X lac он занимает 1/15 часть. Таким образом, ДНК фага X lac обогащена в-галактозидазным геном примерно в 100 раз больше, чем ДНК E. coli. Это упрощает выделение в-галактозидазного гена и позволяет идентифицировать его регуляторные участки и определить их нуклеотидную последовательность. Подобным же образом с получением трансдуцирующих фагов ф80 trp удалось выделить и охарактеризовать гены и регуляторные последовательности, которые образуют триптофановый оперон. Кроме того, благодаря трансдукции появилась возможность изучать влияние различных мутационных изменений на экспрессию и регуляцию генов in vivo.

Рассмотрим те свойства фагового генома, которые ответственны за его способность к специфической трансдукции. Во-первых, геном должен быть способен реплицироваться после того, как произошла инфекция. Во-вторых, он должен приобрести ковалентно сцепленный сегмент невирусной ДНК, который будет трансдуцироваться. Этот сегмент ДНК обычно имеет клеточное происхождение, но в принципе он может быть из любого источника. Он может включиться в любое место вирусного генома, если это не влияет на репликацию вирусной ДНК в инфицированой клетке хозяина или на ее способность упаковываться в зрелые фаговые частицы. Будучи составной частью фагового генома, транс-дуцируемый сегмент ДНК реплицируется вместе

с вирусной ДНК. В-третьих, гены, кодирующие структурные фаговые белки, должны быть функционально активными либо их роль должен выполнять коинфицирующий фаг или клетка-хозяин. И наконец, если мы хотим использовать трансдукцию, нам нужно найти способ разделения различных типов вирусных геномов и идентификации интересующего нас генома, поскольку трансдуциру-ющие вирусы часто инфицируют клетку совместно с вирусом дикого типа. Обычно для такого разделения используют клонирование.

 

Принципы клонирования

 

Чтобы понять, как использовались концепции трансдукции при разработке методов получения рекомбинантных ДНК, нам следует ознакомиться с тем, что представляет собой клонирование. Клон вируса или клеток–это некая популяция, каждый член которой ведет происхождение от одного репродуцирующегося вириона или от одной клетки соответственно. Все члены клона независимо от того, являются ли они вирусами или клетками, по существу идентичны вирусу или клетке, которые дали

начало клону; они также идентичны друг другу. При клонировании вирусов необходимо, чтобы вирусное потомство из одной клетки, инфицированной одной вирусной частицей, размножалось в течение многих циклов инфекции, не смешиваясь с потомством из других инфицированных клеток. Такие вирусные клоны образуют прозрачные зоны на монослое неинфицированных клеток. Клонирование клеток можно осуществить только в том случае, если клетки при размножении остаются изолированными друг от друга. Клоны бактериальных клеток или клеток млекопитающих легко образуются при разреженном посеве их на чашке таким образом, что они образуют отдельные колонии.

С помощью клонирования получают чистый препарат одного генома, поскольку все члены клона содержат идентичные ДНК. Эта концепция молекулярного клонирования используется и при получении чистых препаратов определенных молекул рекомбинантных ДНК.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: