Финансовые риски являются основной формой генерирования прямой угрозы банкротства предприятия, так как финансовые потери, связанные с этим риском, являются наиболее ощутимыми. Поэтому, практически все финансовые решения, направленные на формирование прибыли предприятия, повышения его рыночной стоимости и обеспечение финансовой безопасности, требуют от финансовых менеджеров владения технологией выработки, принятия и реализации рисковых решений [2, стр. 7].
Обоснование и выбор конкретных управленческих решений, связанных с финансовыми рисками, базируется на концепции и методологии „теории принятия решений". Эта теория предполагает, что решениям, связанным с риском, всегда свойственны элементы неизвестности конкретного поведения исходных параметров, которые не позволяют четко детерминировать значения конечных результатов этих решений. В зависимости от степени неизвестности предстоящего поведения исходных параметров принятия решений различают условия риска, в которых вероятность наступления отдельных событий, влияющих на конечный результат, может быть установлена с той или иной степенью точности [2, стр. 152], и условия неопределённости, в которых из-за отсутствия необходимой информации такая вероятность не может быть установлена [2, стр. 153].
Методология принятия решения в условиях риска и неопределенности предполагает построение в процессе обоснования рисковых решений так называемой ”матрицы решений” [4, стр. 248], которая имеет следующий вид (таблица 1):
Таблица №1. Матрица игры nxm
x1 | x2 | … | x4m | |
S1 | a11 | a12 | a1m | |
S2 | a21 | a22 | a2m | |
… | … | |||
Sj | an1 | an2 | anm |
Для каждой игры с природой, задаваемой матрицей выигрышей стратегиям сознательного игрока xi, стратегиям (состояниям) природы S j, соответствуют вероятности Рj [6, стр. 110]. Значения a11, a12, …, anm – конкретный уровень эффективности решения, соответствующий определённой альтернативе при определённой ситуации.
|
Приведённая матрица решений характеризует один из её видов, обозначаемый как матрица выигрышей, так как она рассматривает показатель эффективности. Возможно построение матрицы решений и другого вида, обозначаемого как матрица рисков, в котором вместо показателя эффективности используется показатель финансовых потерь, соответствующих определённым сочетаниям альтернатив принятия решений и возможным ситуациям развития событий.
На основе указанной матрицы рассчитывается наилучшее из альтернативных решений по избранному критерию. Методика этого расчёта дифференцируется для условий риска и неопределённости.
Принятие решений в условиях риска основано на том, что каждой возможной ситуации развития событий может быть задана определённая вероятность его осуществления [2, стр. 154]. Это позволяет взвешивать каждое из конкретных значений эффективности по отдельным альтернативам на значение вероятности и получить на этой основе интегральный показатель уровня риска, соответствующий каждой из альтернатив принятия решений. Сравнение этого интегрального показателя по отдельным альтернативам позволяет избрать для реализации ту из них, которая приводит к избранной цели (заданному показателю эффективности) с наименьшим уровнем риска.
|
Оценка вероятности реализации отдельных ситуаций развития событий может быть получена экспертным путём.
В рамках каждой из альтернатив принятия решений отдельные значения эффективности с учётом их вероятности рассматриваются как случайные переменные, подчиняющиеся определённому закону распределения вероятностей. Распределение вероятностей представляет собой набор значений, которые может принимать случайная переменная (в нашем случае – эффективность решений) при соответствующей вероятности возможных ситуаций развития событий.
Для большинства финансовых операций характерно нормальное распределение вероятностей (распределение Гаусса), хотя в практике оценки риска отдельных реальных инвестиционных проектов могут использоваться и другие виды [2, стр. 155].
При построении матрицы решений с учётом вероятности реализации отдельных ситуаций могут быть использованы методы анализа сценариев, имитационного моделирования, дерева решений и другие.
Исходя из матрицы решений, построенной в условиях риска с учётом вероятности реализации отдельных ситуаций, рассчитывается интегральный уровень риска по каждой из альтернатив принятия решений. При его расчёте используются следующие основные показатели: среднеквадратическое отклонение и коэффициент вариации. Для отдельных видов финансовых операций могут применяться также показатели коэффициента корреляции, бета-коэффициента и другие.
В процессе рассмотрения интегральных значений уровня риска по каждой из альтернатив принятия решения, предпочтение отдаётся той, по которой уровень риска имеет наименьшее значение (при прочих равных условиях).
Рассмотренный подход к принятию решений в условиях риска позволяет получить объективные вероятностные результаты оценки их эффективности [2, стр. 156].