Вероятно, Вселенная так близка к «водоразделу», что, обсуждая ее дальнейшую судьбу, приходится рассматривать как открытый, так и замкнутый варианты.
Для начала, предположим, что Вселенная замкнута. В таком случае в течение 40-50 миллиардов лет ничего существенного не произойдет. По мере увеличения размеров Вселенной галактики будут все дальше разбегаться друг от друга, пока в какой-то момент самые дальние из них не остановятся и Вселенная не начнет сжиматься. На смену красному смещению спектральных линий придет синее. К моменту максимального расширения большинство звезд в галактиках погаснет, и останутся в основном небольшие звезды, белые карлики и нейтронные звезды, а также черные дыры, окруженные роем частиц — в большинстве своем фотонов и нейтронов. Наконец, через примерно 100 миллиардов лет начнут сливаться воедино галактические скопления; отдельные объекты сначала будут сталкиваться очень редко, но со временем Вселенная превратится в однородное «море» скоплений. Затем начнут сливаться отдельные галактики, и в конце концов Вселенная будет представлять собой однородное распределение звезд и других подобных объектов.
В течение всего коллапса в результате аккреции и соударений станут образовываться, и расти черные дыры. Будет повышаться температура фонового излучения; в конце концов, она почти достигнет температуры поверхности Солнца и начнется процесс испарения звезд. Перемещаясь на фоне ослепительно яркого неба, они подобно кометам будут оставлять за собой состоящий из паров след. Но вскоре все заполнит рассеянный туман и свет звезд померкнет. Вселенная потеряет прозрачность, как сразу же после Большого взрыва. (В гл. 6 мы видели, что/ранняя Вселенная была непрозрачной, пока ее температура не упала примерно до 3000 К; тогда свет стал распространяться без помех.)
|
По мере сжатия Вселенная, естественно, будет проходить те же стадии, что и при создании Вселенной, но в обратном порядке. Температура будет расти, и сокращающиеся интервалы времени начнут играть все большую роль. Наконец галактики тоже испарятся и превратятся в первичный «суп» из ядер, а затем распадутся и ядра. Вселенная быстро проскочит через лептонную и адронную эпохи к хаосу. В эпоху адронов ядра развалятся на кварки. На этом этапе Вселенная станет крохотной и состоящей только из излучения, кварков и черных дыр. В последнюю долю секунды коллапс дойдет почти до сингулярности, а затем произойдет «большой пшик».
Отскок.
Что случится во время «большого пшика» — неизвестно, поскольку нет теории, которая годилась бы для описания сверхбольших плотностей, возникающих до появления сингулярности; можно лишь строить предположения. Большинство из них основано на идее «отскока» — внезапного прекращения сжатия, нового Большого взрыва и нового расширения. Одной из причин первоначального введения идеи отскока была возможность обойти неприятную с точки зрения многих астрономов проблему возникновения Вселенной. Если отскок произошел один раз, то он мог случаться неоднократно, может быть, бесчисленное количество раз, поэтому не нужно и беспокоиться о начале времен.
К сожалению, при подробной проработке такой идеи оказалось, что и отскок не решает проблемы. В интервалах между отскоками звезды излучают значительное количество энергии, которая затем концентрируется при достижении состояния, близкого к сингулярности. Эта энергия должна постепенно накапливаться, из-за чего промежуток времени между последовательными отскоками будет возрастать. Значит, в прошлом эти промежутки были короче, а когда-то, в пределе, промежутка не было вовсе, т. е. мы приходим к тому, чего старались избежать, — проблеме начала Вселенной. Согласно расчетам, от начала нас должно отделять не более 100 циклов расширений и сжатий.
|
Многие предпринимали попытки обойти эту проблему. Томми Голд, например, разработал теорию, согласно которой в момент наибольшего расширения время начинает течь вспять. Излучение устремится обратно к звездам и Вселенная «омолодится». В таком случае она будет равномерно осциллировать между коллапсом и максимальным расширением.
Весьма интересную, но очень спорную теорию предложил Джон Уилер. Воспользовавшись идеей Хо-кинга, согласно которой фундаментальные константы «теряют» свои числовые значения при достаточно высоких плотностях, он показал, что цикл осцилляции не обязательно должен удлиняться. Из-за принципа неопределенности значения констант утрачиваются, когда Вселенная сжимается до почти бесконечной плотности. После возможного отскока и нового расширения эти константы могут получить совершенно иные значения. Продолжительность циклов в таких обстоятельствах также будет меняться, но случайным образом; одни циклы станут очень длинными, а другие короткими.