ГЛАВА 3 ПРЕДСТАВЛЕНИЕ ФУНКЦИИ ИНТЕГРАЛОМ ФУРЬЕ




Интеграл Фурье для четной и нечетной функции

Пусть f (x)-четная функция, удовлетворяющая условиям представимости интегралом Фурье.

Учитывая, что , а также свойство интегралов по симметричному относительно точки x =0 интервалу от четных функций, из равенства (2) получаем:

(3)

Таким образом, интеграл Фурье четной функции f (x) запишется так:

,

где a (u) определяется равенством (3).

Рассуждая аналогично, получим, для нечетной функции f (x):

(4)

и, следовательно, интеграл Фурье нечетной функции имеет вид:

,

где b (u) определяется равенством (4).

 

Комплексная форма интеграла Фурье

, (5)

где

.

Выражение в форме (5) является комплексной формой интеграла Фурье для функции f (x).

Если в формуле (5) заменить c (u) его выражением, то получим:

, где правая часть формулы называется двойным интегралом

Фуpье в комплексной форме. Переход от интеграла Фурье в комплексной форме к интегралу

в действительной форме и обратно осуществим с помощью формул:

 

Формулы дискретного преобразования Фурье

Обратное преобразование Фурье.

где n =1,2,..., k =1,2,...

Дискретным преобразованием Фурье - называется N -мерный вектор

при этом, .

 

Разложение четной функции в ряд

Данную выше функцию сделаем четной(см. теорию), и рассмотрим ее на промежутке от 0 до смотри рис.2

Рис.2

 

поэтому разложение по косинусу имеет вид:

 

Из разложения видим что при n =2 дробь теряет смысл поэтому отдельно рассмотрим разложения первого и второго коэффициента суммы:

На основе данного разложения запишем функцию в виде ряда:

и вообще

.

Найдем первые пять гармоник для найденного ряда:

1-ая гармоника

2-ая гармоника

3-я гармоника

4-ая гармоника

 

 

5-ая гармоника

А теперь рассмотрим сумму этих гармоник F(x):

Комплексная форма ряда по косинусам

Для рассматриваемого ряда получаем коэффициенты (см. гл.1)

,

но при не существует, поэтому рассмотрим случай когда n =+2:

(т.к. см. разложение выше)

и случай когда n =-2:

(т.к. )

И вообще комплексная форма:

или

или

 

Разложение нечетной функции в ряд

Аналогичным образом поступаем с данной функцией F(x), продлевая ее как нечетную, и рассматриваем на промежутке от 0 до смотри рис.3

Рис.3

поэтому разложение по синусам имеет вид:

Из данного разложения видно, что при n =2 произведение неопределенно (можно не учесть часть суммы), поэтому рассмотрим два отдельных случая.

При n =1:

,

и при n =2:

Учитывая данные коэффициенты имеем разложения в виде

и вообще

Найдем первые пять гармоник для данного разложения:

1-ая гармоника

2-ая гармоника

3-ая гармоника

4-ая гармоника

5-ая гармоника

И просуммировав выше перечисленные гармоники получим график функции F (x)

Вывод:

На основании главы 2, разложение функции в тригонометрический ряд(рис.1), разложение в ряд по косинусам(рис.2), разложение по синусам(рис.3), можно заключить, что данная функция разложима в тригонометрический ряд и это разложение единственное. И проанализировав суммы первых пяти гармоник по каждому разложению можно сказать, что наиболее быстрее к заданному графику достигается при разложении по синусам.

 

Комплексная форма ряда по синусам

Основываясь на теорию (см. гл.1) для ряда получаем:

, (т.к. )

тогда комплексный ряд имеет вид:

 

ГЛАВА 3 ПРЕДСТАВЛЕНИЕ ФУНКЦИИ ИНТЕГРАЛОМ ФУРЬЕ

Проверка условий представимости

Данную ранее функцию (см. гл. 2) доопределим на всей прямой от до как равную нулю(рис.4).

 

Рис.4

а) f(x)-определенна на R;

б) f(x) возрастает на , f(x) убывает на - кусочнo-монотонна.

f(x) = const на и .

< .

 

 

Интеграл Фурье

В соответствии с теорией (см. гл. 1) найдем a (u) и b (u):

;

.

 

И в конечном варианте интеграл Фурье будет выглядеть так:

 

Интеграл Фурье в комплексной форме

Теперь представим интеграл Фурье в комплексной форме. На основе выше полученных разложений имеем:

,

,

а теперь получим интеграл в комплексной форме:

 

.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: