III.Численное решение основной системы уравнений.




Всё многообразие численных моделей можно разделить на два больших класса.Модели, относящиеся к первому, основаны на решении уравнений переноса носителей численным методом, а именно, с помощью аппарата конечных разностей. Модели второго класса основаны на представлении активного прибора в виде совокупности большого числа сосредоточенных элементов или отдельных секций, отражающих многомерный характер структуры прибора.

В данной работе рассматриваются модели МДП-структур, относящиеся по введённой классификации к первому классу. В этом методе производные

неизвестных функций, входящие в исходные дифференциальные уравнения и краевые условия, заменяются конечно-разностными отношениями (построение разностной схемы), в результате чего получается система алгебраических уравнений, которая затем решается прямыми или итерационными методами.

Алгебраизация ФСУ,

На первом этапе решения системы дифференциальных уравнений необходимо осуществить алгебраизацию задачи путём аппроксимации на сетке множества точек, которыми моделируется область изменения неизвестных.

Каждое из трёх основных уравнений математической модели в интегральной форме выражает закон, который выполняется как в элементарной ячейке, так и во всей области определения,что является следствием фундаментальных физических свойств непрерывности электрического смещения и тока.конечно-разностная схема предполагает сохранение этих свойств и для алгебраических уравнений.

Рассмотрим некоторые вопросы касающиеся построения сеток дискретизации[2]. Соображения удобства реализации алгоритма решения основной системы на ЭВМ, а так же требование его экономичности обуславливают применение регулярных сеток, расположение узлов в которых подчиняется определённым закономерностям. В практике численного моделирования микроэлектронных структур примеяются как непрерывные прямоугольные (неравномерные), так и треугольные сетки (рис.2.). Треугольная сетка позволяет с меньшим количеством дополнительных узлов сгущать сетку в областях локальных неоднородностей (рис.2.б).

При автоматическом построении сетки нужно знать где необходимо сгущение узлов и как интерполировать различные величины для вновь введённых точек сетки. Пространственная сетка должна быть такой, чтобы ошибка дискретизации была распределена по ней равномерно, т.е чтобы частные производные по пространству аппроксимировались с заданной точностью. Метод конечных разностей наиболее удобно реализуется на непрерывных

 

 

       
         
       
       
       

 

 

а)

 

 
 


       
         
       
       
       

 

б)

Рис.2.Виды сеток и

их локальные уточнения.

 

 

прямоугольных сетках.Он является точным, если значения величин в каждой точке сетки могут быть описаны полиномом второго порядка.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: