Устройство и подключение обычной люминесцентной лампы с электромагнитным балластом




РТУТНЫЕ ЛАМПЫНИЗКОГО ДАВЛЕНИЯ

Принцип действия основан на возбуждении атомов ртути электронами в газовом разряде; атомы ртути испускают резонансное ультрафиолетовое с длинами волн 254 нм и 185 нм. Для преобразования УФ излучения ртути в видимый свет используют фотолюминофор.

Фотолюминофоры

ЛЮМИНОФОРЫ(от лат. lumen, род. падеж luminis - свет и греч. phoros - несущий) - вещества, способные преобразовывать различные виды энергии в световую - люминесцировать. По типу возбуждения подразделяются на фото-, катодо-, электро-, рентгено-, радио-, хемилюминофоры. Неорганические люминофоры называются иначе фосфоры. Как правило, их свечение обусловлено наличием примесей - активаторов. Концентрация активатора обычно составляет 10-1-10-3%. (Существуют люминофоры, не содержащие активаторов, - CaWO4).

Люминофоры обозначают формулой основы с указанием активатора, например ZnS: Ag, Ni; после знака ":" - активаторы.

Большинство неорганических люминофоров имеет кристаллическую структуру и относятся к кристаллофосфорам. Люминофоры обычно используют в виде относительно тонких поликристаллических слоев (1-100 мкм), наносимых на внутреннюю поверхность ламп.

 

Требования к люминофору

Способность поглощать излучение с длинами волн 254 нм и 185 нм.

Способность излучать в видимой области спектра.

Высокий квантовый выход излучения в видимом диапазоне при возбуждении УФ излучением.

Пригодность для нанесения на внутреннюю поверхность лампы.

Устойчивость к технологическому процессу изготовления лампы.

Стабильность фотолюминесценции в процессе эксплуатации.

 

В ртутных лампах низкого давления в большинстве случаев используют галофосфат кальция - 3[Са3(РО4)2].Са(Сl, F)2: Sb, Mn

 

Излучение галофосфатного люминофора включает две широкие полосы с максимумами около 480 нм (сурьма) и около 580 нм (марганец).

Спектр излучения может изменяться в широких пределах в зависимости от соотношений между содержаниями активаторов (сурьмы и марганца) и входящих в основу галогенов (фтора и хлора). Квантовый выход: 0,71 – 0,92

 

Спектр излучения люминофора

 

ЛБ – лампа белого света

ЛТБ – лампа теплого белого света

ЛХБ – лампа холодного белого света

ЛД – лампы дневного света

ЛДЦ – лампы дневного света с улучшенной цветопередачей

Люминофоры для ультрафиолетовых ламп:

BaSi2O5:Pb, (Sr, Ca)3(PO4)2:Tl - 350 – 360 нм

(Ba, Zn)2SiO4:Pb (Ca, Zn)3(PO4)2:Tl - 300 – 310 нм

 

 

Узкополосные люминофоры:

1. (Ba, Mg)2Al5O27:Eu l = 450 нм, Dl = 40 нм,

квантовый выход – 1.

2. MgAl11O19:Ce, Tb l = 543 нм, Dl = 8 нм, квантовый выход – 1.

3. Оксид иттрия, активированный европием l = 611 нм, Dl = 5 нм, квантовый выход – 0,95

 

Устройство и подключение обычной люминесцентной лампы с электромагнитным балластом

1 - Вольфрамовая нить (спираль) электрода. В современных люминесцентных лампах применяют, как правило, оксидные катоды, работающие в режиме самоподогрева с катодным пятном и повышенной термоэлектронной эмиссией со всей поверхности. Оксидный катод покрыт слоем эмитирующего вещества, состоящего из оксидов щелочноземельных металлов, получаемых при нагреве и разложении карбонидов (BaCO3, CaCO3, SrCO3). Покрытие активировано малыми примесями щелочноземельных элементов. В результате наружная поверхность катода превращается в слой с малой работой выхода. Оксидные катоды работают при 1250 – 1300 К, обеспечивая большой срок службы и малые катодные падения напряжения.

2 - Стеклянная колба. Наполняется инертным газом, как правило, аргоном под давлением 100-400 Па и небольшим количеством ртути.

3 - Слой порошкообразного люминофора. Изменяя пропорции активаторов, получают различные оттенки при свечении ламп.

4 - Диэлектрический цоколь.

5 - Электрические выводы.

6 - Дроссель.

7 - Стартер (автоматический пусковой выключатель)

8 - Выключатель.

Схема люминесцентной лампы:
1 – ножка; 2 – электрод; 3 – катод; 4 – слой люминофора; 5 – трубка колбы; 6 – цоколь; 7 – ртутные пары

В трубку люминесцентной лампы введены небольшое количество ртути, создающее при 30 – 40 °С давление ее насыщающих паров, и инертный газ с парциальным давлением в несколько сотен Па. В качестве инертного газа используют аргон при давлении 330 Па. В последнее время для наполнения ламп общего назначения применяют смесь, состоящую из 80 – 90 % Ar и 20 – 10 % Ne при давлении 200 – 400 Па. Добавка инертного газа к парам ртути облегчает зажигание разряда, снижает распыление оксидного покрытия катода, увеличивает градиент электрического потенциала столба разряда и повышает выход излучения резонансных линий ртути. На внутреннюю поверхность трубки равномерно по всей ее длине наносят тонкий слой люминофора. Благодаря этому световая отдача ртутного разряда, равная 5 – 7 лм/Вт, возрастает до 70 – 80 лм/Вт в современных люминесцентных лампах мощностью 40 Вт. При использовании люминофоров на основе редкоземельных элементов световая отдача люминесцентной лампы диаметром 26 мм повышается до 90 – 100 лм/Вт.

Разогрев лампы

Когда мы включаем выключатель (8), электрическая цепь замыкается, ток проходит через дроссель, стартер и электроды. Стартер представляет собой небольшую газоразрядную лампу и конденсатор (на рисунке 3 устройство стартера не показано). При замыкании электрической цепи выключателем ток между электродами лампы проходить не может, а вот между электродами стартера возникает тлеющий разряд, при этом электроды стартера (неоновой лампы) нагреваются. Один или оба электрода стартера изготавливаются из биметаллических пластин, меняющих свою форму при изменении температуры. При нагреве до определенной температуры электроды замыкаются и начинают остывать, так как ток уже течет через замкнутые электроды стартера. Все это время вольфрамовые нити (1) электродов люминесцентной лампы при прохождении электрического тока нагреваются. Инертный газ внутри стеклянной колбы также нагревается и ртуть, содержащаяся в лампе, испаряется. Когда биметаллическая пластина - электрод стартера остывает и возвращается в исходное положение, электрическая цепь между электродами стартера размыкается.

Создание дуги

Для создания электрической дуги обычного напряжения в 220 Вольт недостаточно. Чтобы дуга зажглась, необходимо создать разницу потенциалов в несколько тысяч вольт. Для этого используется дроссель (6) - проволочная катушка, намотанная на сердечник. Когда стартер (7) размыкает цепь, в катушке наводится мгновенное высокое напряжение. При этом всплеске напряжения возникает электрическая дуга между электродами, и лампа начинает светиться. Конденсатор, подключенный параллельно лампе стартера, продляет время всплеска, и предотвращает возникновение дуги между электродами стартера. После зажигания дуги сопротивление лампы быстро падает и соответственно сила тока, проходящего через лампу, начинает быстро возрастать. Чтобы лампа не перегорела, опять же используется дроссель. Обладая определенным сопротивлением, дроссель регулирует силу тока, проходящего через лампу, и в данном случае выступает в роли балласта. Если дуга не зажглась, то между электродами стартера опять возникает тлеющий разряд и процесс включения повторяется. После того, как зажглась дуга, необходимости в подогреве электродов нет. Стартер, размыкая электрическую цепь нагрева электродов, значительно увеличивает ресурс работы люминесцентных ламп.

Основной режим работы

Зависимость потоков излучения резонансной линии ртути λ = 254 нм от давления ее паров
1 – ртуть с добавкой аргона; 2 – чистая ртуть

После возникновения дуги электрический ток течет уже между электродами, и лампа начинает работать в основном режиме.

Излучение резонансных линий зависит от давления паров ртути, рода и давления используемого в лампах инертного газа. Давление насыщенных паров ртути определяется температурой наиболее холодной части колбы лампы, содержащей ртуть в жидкой фазе.

Увеличение потока излучения в лампах, наполненных парами ртути при давлениях до 5 Па, практически пропорционально давлению ртути, при больших давлениях наступает насыщение. Введение добавки инертного газа увеличивает выход резонансного излучения атомов ртути. В ртутном разряде имеется значительная концентрация нестабильных атомов Hg*, которые обычно оседают на стенках трубки, повышая ее температуру. При увеличении давления в лампе, наполненной инертным газом, вероятность достижения метастабильными атомами стенок без соударения с другими атомами газа или электронами резко снижается. В результате большая часть атомов ртути переходит в возбужденное состояние с последующим испусканием фотонов, что увеличивает све

 
 

товую отдачу.

 

Зависимость выхода резонансного излучения ртути λ = 254 нм от плотности тока Зависимость световой отдачи люминесцентной лампы от ее длины

 

 
 

Зависимость температуры внешней поверхности трубки люминесцентной лампы при давлении аргона 400 – 500 Па от тока и диаметра трубки, мм: 1 – 10; 2 – 25; 3 – 38

Для изготовления ламп разной мощности выбран определенный ряд диаметров – 16, 25, 38 и 54 мм. С ростом тока, то есть мощности ламп для получения практически приемлемой длины и обеспечения температуры стенки, необходимо увеличивать диаметр трубки колбы. Лампы одинаковой мощности можно, в принципе, создать в колбах различного диаметра, но при этом они будут иметь разную длину. Для унификации ламп и возможности их применения в различных светильниках длины люминесцентных ламп стандартизированы и составляют 440, 544, 900, 1505 и 1200 мм.

 

 

Преимущества электромагнитного балласта:

  • Простота конструкции и как следствие
  • Низкая стоимость и
  • Относительно высокая надежность. Чем реже лампа будет включаться-выключаться, тем дольше она прослужит. Срок службы люминесцентных ламп с использованием электромагнитного балласта 6000-12000 часов.

Недостатки:

  • Долгое включение - 1-5 сек в зависимости от напряжения в сети, температуры окружающей среды и степени износа лампы.
  • Низкочастотное гудение дросселя (около 100 Гц). Чем старее дроссель, тем гудение громче.
  • Возможное мерцание лампы.
  • Большие размеры и вес дросселя, что непосредственно влияет на размеры светильника
  • Уменьшение яркости при снижении температуры окружающей среды из-за уменьшения давления газа в стеклянной колбе (актуально для наружных осветительных приборов). При отрицательной температуре люминисцентную лампу с электромагнитным балластом вообще не включишь.

Частично устранить эти недостатки помогает электронный балласт (электронный пускорегулирующий аппарат (ЭПРА)). Электронный балласт заменяет не только дроссель, но и стартер. Моделей электронных балластов много, одни включают лампу с заметной временной задержкой, как при использовании электромагнитного балласта, другие позволяют плавно изменять яркость люминесцентной лампы, третьи делают это практически мгновенно, в этом случае электроды вообще не нагреваются и дуга зажигается между холодными электродами.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-12-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: