Профилактика неблагоприятного действия шума




Мероприятия по борьбе с шумом могут быть техническими, архитектурно-планировочными, организационными и медико-профи- лактическими.

Технические средства борьбы с шумом:

- устранение причин возникновения шума или снижение его в источнике;

- ослабление шума на путях передачи;

- непосредственная защита работающего или группы рабочих от воздействия шума.

Наиболее эффективным средством снижения шума является замена шумных технологических операций на малошумные или полностью бесшумные. Большое значение имеет снижение шума в источнике. Этого можно добиться усовершенствованием конструкции или схемы установки, производящей шум, изменением режима ее работы, оборудованием источника шума дополнительными звукоизолирующими устройствами или ограждениями, расположенными по возможности ближе к источнику (в пределах его ближнего поля).

Наиболее шумное оборудование размещают в звукоизолирующих камерах. При больших габаритах машин или значительной зоне обслуживания оборудуют специальные кабины для операторов.

Планировочные мероприятия должны быть направлены на локализацию звука и уменьшение его распространения. Помещения с источниками высокого уровня шума по возможности следует группировать в одной зоне здания, примыкающей к складским и вспомогательным помещениям, и отделять коридорами пли подсобными помещениями.

Необходимо применять средства индивидуальной защиты органа слуха от шума (антифоны, заглушки).

В комплексе мероприятий по защите человека от неблагоприятного действия шума определенное место занимают медицинские средства профилактики. Важнейшее значение имеет проведение предварительных и периодических медицинских осмотров.

Противопоказаниями к приему на работу, сопровождаемую шумовым воздействием, служат:

- стойкое понижение слуха (хотя бы на одно ухо) любой этиологии;

- отосклероз и другие хронические заболевания уха с неблагоприятным прогнозом;

- нарушение функции вестибулярного аппарата любой этиологии, в том числе, болезнь Меньера.

 

УЛЬТРАЗВУК

Ультразвук (УЗ) - это упругие колебания и волны с частотой выше 20 кГц, не слышимые человеческим ухом. В настоящее время удается получать ультразвуковые колебания с частотой до 10 ГГц.

Различают низкочастотны УЗ – 20 000 – 100 000 Гц

Высокоочастотный УЗ - 100 000 – 1 000 000 Гц

Ультразвуковые волны по своей природе не отличаются от упругих волн слышимого диапазона. Распространение ультразвука подчиняется основным законам, общим для акустических волн любого диапазона частот. К основным законам распространения ультразвука относятся законы отражения и преломления на границах различных сред, дифракции и рассеяния ультразвука при наличии препятствий и неоднородностей на границах, законы волноводного распространения в ограниченных участках среды.

Вместе с тем высокая частота ультразвуковых колебаний и малая длина волн обусловливают ряд специфических свойств, присущих только ультразвуку.

Особенности ультразвука

- Малая длина волны (<1,5 см) даёт возможность получать направленный сфокусированный пучок большой энергии;

- ультразвуковые волны способны давать отчётливую акустическую тень, так как размеры экранов всегда будут соизмеримы или больше длины волны;

- проходя через границу раздела двух сред, ультразвуковые волны могут отражаться, преломляться и поглощаться;

ультразвук, особенно высокочастотный, практически не распространяется в воздухе, так как звуковая волна, распространяясь в среде, теряет энергию пропорционально квадрату частоты колебаний.

Источники ультразвука.

В настоящее время ультразвук широко применяется в машиностроении, металлургии, химии, радиоэлектронике, строительстве, геологии, легкой и пищевой промышленности, рыбном промысле, медицине и т.д.

Применение ультразвука

Среди многообразия способов применения ультразвука с позиций оценки их возможного неблагоприятного влияния на организм выделяют два основных направления:

1. Применение низкочастотных (до 100 кГ ц) ультразвуковых колебаний, распространяющихся контактным и воздушным путями, для активного воздействия на вещества и технологические процессы - очистка, обеззараживание, сварка, пайка, механическая и термическая обработка материалов (сверхтвердых сплавов, алмазов, керамики и др.), коагуляция аэрозолей; в медицине - ультразвуковой хирургический инструментарий, установки для стерилизации рук медперсонала, различных предметов и др.

2. Применение высокочастотных (100 кГц - 100 МГц и выше) ультразвуковых колебаний, распространяющихся исключительно контактным путем, для неразрушающего контроля и измерений; в медицине - диагностика

Исследование сердца, обнаружение инородных тел, камней, диагностика опухолей, диагностика кистозных образований, диагностика отслоений сетчатки, диагностика кровоизлияний, определение плотности сросшейся и повреждённой кости, диагностика повреждений звуковоспринимающего аппарата и т.д.

Лечение различных заболеваний. Оказывает болеутоляющее, спазмолитическое, противовоспалительное и бактерицидное действие, улучшает крово- и лимфообращение, стимулирует деятельность нервной и эндокринной систем, усиливает защитные реакции организма, снижает артериальное давление, Разрушает опухолевые ткани, способствует сращению переломов, используется для лечения катаракты, используется для борьбы с фантомными болями.

Анализ распространенности и перспектива применения разнообразных ультразвуковых источников показал, что 60-70% всех работающих в условиях неблагоприятного воздействия ультразвука составляют дефектоскописты, операторы очистных, сварочных, ограночных агрегатов, врачи ультразвуковых исследований (УЗИ), физиотерапевты, хирурги и др.

Используемые в лечебно-профилактических учреждениях диагностические установки работают в диапазоне частот 0,8-20,0 МГц (ВЧ УЗ), частота следования импульсов - 50-100 Гц. Диагностическое сканирование выполняется ручным ультразвуковым датчиком. Продолжительность одного исследования колеблется от 15-20 мин до 1-1,5 ч. Уровни высокочастотного контактного ультразвука, воздействующего на руки врача, составляют от 0,5-25,0-40,0 мВт/см2 до 1,0 Вт/см2 при диагностических исследованиях, занимающих 70% рабочего времени.

Ультразвуковая физиотерапевтическая аппаратура генерирует колебания с частотами 0,88 и 2,64 МГц. Уровни воздействующего на руки медперсонала постоянного и импульсного контактного ультразвука, распространяющегося через боковую поверхность ручного излучателя, составляют 0,02-1,5 Вт/см. Длительность одной процедуры не превышает 15 мин, время контакта с ультразвуком равно 33% за смену.

В целях унификации критериев и методов оценки степени производственных воздействий ультразвука разработана «Гигиеническая классификация ультразвука, воздействующего на человека» (табл. 1).

Работающие с технологическими и медицинскими ультразвуковыми источниками подвергаются воздействию компл екса неблагоприятных факторов производственной среды, ведущим из которых является ультразвук с частотой колебаний 20 Гц - 20,0 МГц и интенсивностью 50-160 дБ.

В ультразвуковой хирургической аппаратуре частота колебаний составляет 26,6-44,0-66,0-88,0 кГц. При работе хирургов отмечена контактная передача ультразвука на руки, длительность ультразвукового воздействия не превышает 14% рабочего времени. Интенсивность контактного ультразвука находится в пределах 0,07- 1,5 Вт/см2, уровни воздушного ультразвука на рабочих местах хирургов ниже допустимых - 80-89 дБ.

Применяемые в промышленности, биологии, медицине интенсивности контактного ультразвука принято подразделять на низкие (до 1,5 Вт/см2), средние (1,5-3,0 Вт/см2) и высокие (3,0-10,0 Вт/см2).

Таблица 1.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: