МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ УПРУГИХ СВОЙСТВ КРЕМНИЯ




Упругие свойства изотропных твёр­дых тел определяются тремя параметрами: модулем Юнга Y, коэффициентом Пуассона v и модулем сдвига G. Два из них незави­симы, а третий выражается через первые два. Для анизотропных материалов, к которым принадлежат все полупроводники, упругие свойства определяются набором гораздо большего числа упругих коэффициентов.

Деформация ξ и напряжения σ рассматриваются как симметричные тензоры 2-го ранга.

Скаля́ры, векторы, тензоры второго ранга, а также более сложные объекты – тензоры более высокого ранга, могут быть объединены в общую систему, и все могут рассматриваться как тензоры разных рангов. Скаляр – как тензор нулевого ранга, вектор – как тензор первого ранга. При этом в пространстве n измерений тензор r – го ранга может быть определён nr числами (имеет nr компонентов). Легко видеть, что скаляр определяется одним числом (n0 = 1), вектор в пространстве трёх измерений – тремя числами (31 = 3), тензор второго ранга – девятью числами (33 = 9). Тензор второго ранга в пространстве трёх измерений может быть представлен в виде матрицы третьего порядка. Симметричным он называются, потому что справедливы равенства:

В случае симметрии тензора второго ранга, три из этих чисел равны трём другим и разных оказывается не более шести чисел.

В пределах классической теории упругости, согласно обобщённому закону Гука, компоненты напряжения σij являются линейными функциями компонентов дефор­мации ξkm. Для поверхностных сил (а их по три на каждую из трёх граней) для упроще­ния записи принимают систему индексных обозначений: первый индекс указывает на­правление нормали к грани элемента, на который эта компонента действует, а второй индекс указывает ось, которой параллельна эта компонента напряжений (рис.6).

 

Рис. 6. Компоненты напряжения в индексных обозначениях

 

Для характеристики напряжённого состояния кубического элемента материала необходимо задать по три компоненты напряжения на каждой из трёх граней. Описание только одной компоненты напряжения должно содержать, в общем случае, девять слагаемых, каждое из которых отражает вклад соответствующей деформации в определение рассматриваемой компоненты напряжения:

Обобщённый закон Гука должен содержать девять таких строк (по одной для каждой из девяти компонент напряжения). Девять компонент напряжения в функции девяти компонент деформации дают 81 коэффициентов влияния, образующих тензор 4-го ранга. Этот закон сокращённо можно записать в тензор­ном виде в одной из двух форм:

где σij, ξkm – тензоры второго ранга напряжения и деформации.

Коэффициенты cijkm называются модулями упругости (величины, отличные от модуля Юнга), а коэффициенты skmij – коэффициентами податливости (модулями гибкости).

Из условия статического равновесия ( ) следует, что попарная перестановка индексов не изменит величины компонент тензора упругих постоянных. Поэтому число различных компонент тензора 4-го ранга уменьшается до 36. Из условия взаимности деформаций следует, что взаимная перестановка первых двух индексов со вторыми двумя индексами также не изменяет значения коэффициента. Таким образом, в общем случае анизотропного материала (без элементов симметрии) тензор модулей упругости или коэффициентов податливости содержит 21 отличающуюся друг от друга компоненту.

При операциях с тензорами часто используют сокращённую форму записи ин­дексов. Поскольку внутри пары индексы можно переставлять между собой, каждую пару индексов можно заменить одним индексом, который пробегает значения от 1 до 6. Замена индексов осуществляется по схеме: 11 → 1, 22 →2, 33 → 3, 23 → 4, 31 →5, 12 → 6. В результате компоненту тензора коэффициентов податливости skmij = s1323 в сокращенной форме можно записать так: spq = s54 = s45, а компоненту тензора напряже­ний σij = σ12 записать σq = σ6.

Число независимых коэффициентов spq и cqp для кристаллов с определён­ной симметрией ещё больше сокращается. Так, упругие свойства кристаллов с кубической симметрией (к которым относятся кремний, германий, алмаз) в системе координат, определяемой кристаллографическими осями, описываются всего лишь тремя независимыми модулями упругости или тремя коэффициентами податливости. Матрица коэффициентов податливости для этого случая выглядит следующим образом:

Аналогично можно записать матрицу модулей упругости. Значения независимых коэффициентов s11, s12, s44, ( 10-11 Па-1) и c11, с12, с13, ( 1011 Па) для кремния:

s11 = 0.768; с11 = 1.657;

s12 = – 0.214; с12 = 0.639;

s44 = 1.256; с44 = 0.796;

sА = 0.354; сА = -0.574.

Для произвольной системы координат значения модулей упругости и коэффициентов податливости будут другими, их значения вычисляются из приведенных выше значений и, так называемых, направляющих косинусов. Направляющие косинусы – это косинусы углов между осью произвольной системы координат и кристаллографическими осями X1, X2, и X3. Условимся штрихованные обозначения относить к произвольной системе координат, а без штрихов – к системе кристаллографических осей. Тогда, коэффициент податливости кремния по произвольному направлению равен:

,

где

В практике создания упругих элементов тензопреобразователей наиболее распространены ориентации кремниевых пластин (111), (100) и (110).

При расчёте напряжённого состояния упругих элементов ТР, напряжениями и деформациями по направлению, перпендикулярному плоскости, в которой расположен ТР, как правило, пренебрегают, а учитывают только напряжения и деформации в плоскости упругого элемента.

 

...





Читайте также:
Основные факторы риска неинфекционных заболеваний: Основные факторы риска неинфекционных заболеваний, увеличивающие вероятность...
Что входит в перечень работ по подготовке дома к зиме: При подготовке дома к зиме проводят следующие мероприятия...
Понятие о дефектах. Виды дефектов и их характеристика: В процессе эксплуатации автомобилей происходит...
Производственно-технический отдел: его назначение и функции: Начальник ПТО осуществляет непосредственное...

Поиск по сайту

©2015-2022 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-15 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту:


Мы поможем в написании ваших работ!
Обратная связь
0.01 с.