Гипотеза наибольших касательных напряжений




опасное состояние материала наступает тогда, когда наибольшие касательные напряжения достигают предельной величины.

τ = τmax = (σmax – σmin)/2

 

44. Гипотеза энергии формоизменения (4 гипотеза прочности).

 

Гипотеза Мора

Опасное состояние материала наступает тогда, когда на некоторой площадке осуществляется наиболее неблагоприятная комбинация нормального и касательного напряжений.

Формула для вычисления эквивалентных напряжений, согласно гипотезе Мора имеет вид:

σэкв = σ(1 – k)/2 + 1/2 (1 + k) √(σ2 + 4τ2),

Тема 2.8. Сопротивление материалов

 

Факторы влияющие на величину предела выносливости.


1. Влияние концентрации напряжений

В местах резкого изменения поперечных размеров детали, отверстий, проточек, пазов, резьбы и т.д., возникает местное повышение напряжений, значительно снижающее предел выносливости по сравнению с таковым для гладких цилиндрических образцов.

2. Влияние размеров детали

Экспериментально установлено, что с увеличением размеров испытуемого образца предел его выносливости понижается (масштабный эффект). Это объясняется тем, что с увеличением размеров возрастает вероятность неоднородности структуры материалов и его внутренних дефектов (раковины, газовые включения), а также тем, что при изготовлении образцов малого размера имеет место упрочнение (наклеп) поверхностного слоя на относительно большую глубину, чем у образцов больших размеров.

 

3. Влияние состояния поверхности

Следы режущего инструмента, острые риски, царапины являются очагом возникновения усталостных микротрещин, что приводит к снижению предела выносливости материала.

4. Влияние поверхностного упрочнения

Различные способы поверхностного упрочнения (механическое упрочнение, химикотермическая и термическая обработка) могут существенно повысить значение коэффициента качества поверхности (до 1,5 … 2,0 и более раз вместо 0,6 … 0,8 раз для деталей без упрочнения).

5. Влияние асимметрии цикла

Причиной усталостного разрушения детали являются длительно действующие переменные напряжения.


Тема 2.9. Прочность при динамических нагрузках.

46. Понятие о динамических нагрузках.


-Это нагрузки, изменяющиеся не только во времени, но и в пространстве.

Для динамических нагрузок характерна относительно большая скорость приложения, что требует при расчетах учитывать инерционную массу как объекта, создающего нагрузку, так и элемента, подвергающегося воздействию нагрузки. Другими словами, следует учитывать характер движения объекта создающего нагрузку, а также то, что инерционные массы элементов конструкции, подвергающиеся воздействию динамической нагрузки, перемещаются с ускорением и влияют на напряженно-деформированное состояние элементов. Чтобы учесть это влияние, в уравнения статического равновесия к внешним и внутренним силам добавляются силы инерции на основании принципа Даламбера. Добавление инерционных сил позволяет рассматривать любую движущуюся систему как находящуюся в состоянии статического равновесия в любой момент времени. Таким образом динамические нагрузки вызывают в материале исследуемого элемента конструкции динамические напряжения и поведение материала при этом оказывается отличным от поведения при статических напряжениях.

В свою очередь динамические нагрузки в зависимости от характера движения бывают также нескольких видов. Для строительных конструкций наиболее важными являются подвижные и ударные нагрузки:

Подвижные нагрузки

Это нагрузки возникающие в результате перемещения некоего объекта по поверхности исследуемой конструкции (вдоль рассматриваемой оси элемента).

Например, автомобиль, проезжающий по мосту, создает подвижную нагрузку на элементы моста. При этом подвижная нагрузка будет зависеть не только от массы автомобиля, но и от его скорости и траектории движения. Например, при движении по окружности центробежная сила будет тем больше, чем больше скорость движения, потому улететь в кювет на плохой дороге на большой скорости - пара пустяков.

Ударные нагрузки

Это нагрузки, возникающие в момент соприкосновения перемещающегося объекта с поверхностью исследуемой конструкции (вдоль или поперек рассматриваемой оси элемента).

Тема 2.10. Устойчивость сжатых стержней.

 

47. Критическая сила, критическое напряжение.

1. КРИТИЧЕСКАЯ СИЛА — эйлерова сила, наибольшее значение сжимающей силы, при которой сжатое упругое тело (длинный стержень, тонкая пластина и т. п.) сохраняет нач. (неизогнутую) форму равновесия.

2.Критическое напряжение- отношение критической силы, при которой нарушается устойчивость прямолинейной формы сжатого стержня, к площади поперечного сечения стержня.

48. Категория стержней в зависимости от гибкости

I – стержни большой гибкости;

II – стержни средней гибкости;

III – стержни малой гибкости.

Стержни малой гибкости рассчитываются на прочность, а стержни большой и средней гибкости – на устойчивость и на прочность.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-14 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: