Особенности кровообращения отдельных органов




 

Мозговое кровообращение

Головной мозг характеризуется непрерывно протекающими энер­гоемкими процессами, требующими потребления глюкозы мозговой тканью. Известно, что нервная ткань практически не обладает ни субстратом для анаэробных окислительных процессов, ни запасами кислорода, а следовательно, для нормального функционирования мозга необходима высокая интенсивность его кровоснабжения. В свя­зи с этим головной мозг, средняя масса которого 1400—1500 г, в состоянии функционального покоя получает около 750 мл/мин кро­ви, что составляет примерно 15% от сердечного выброса. Объемная скорость кровотока при этих условиях соответствует 50— 60 мл/100 г/мин. Следует отметить, что серое вещество обеспечи­вается кровью интенсивнее, чем белое, что обусловлено более вы­сокой клеточной активностью. У детей первого года жизни величина кровотока на 50— 55% больше, а в старческом возрасте примерно на 20% меньше, чем у человека в зрелом возрасте. Снижение интенсивности кровоснабжения головного мозга чревато развитием дефицита кислорода и глюкозы в мозговой ткани, что может привести к нарушениям деятельности мозга. В здоровом организме, благодаря надежным механизмам ауторегуляции мозгового кровотока, пита­ние мозга остается практически неизменным при падении системного АД вплоть до 50 мм рт. ст.

Регуляция мозгового кровообращения. Известно, что мозг рас­положен в ригидном костном образовании — черепе (исключение составляют дети грудного возраста, у которых имеются роднички, придающие некоторую подвижность стенкам черепной коробки). Поскольку в полости черепа, помимо мозгового вещества, содержатся кровь и цереброспинальная жидкость, являющиеся малосжимаемыми жидкостями, их общий объем остается почти постоянным. При избыточности кровоснабжения может произойти излишняя гидрата­ция ткани мозга с последующим развитием отека мозга и повреж­дениями, несовместимыми с жизнью, жизненно важных центров. Основной причиной избыточности кровоснабжения головного мозга может служить увеличение системного АД, однако в норме при участии ауторегуляторных сосудистых реакций мозг предохранен от избыточного кровенаполнения при повышении давления вплоть до 160—170 мм рт. ст. Помимо ауторегуляции кровотока, предо­хранение головного мозга как органа, близко расположенного к сердцу, от высокого кровяного давления и избыточности пульсации осуществляется и за счет особенностей строения сосудистой системы мозга. В частности, эту функцию достаточно эффективно выполняют многочисленные изгибы (сифоны) по ходу сосудистого русла, которые способствуют значительному перепаду давления и сглаживанию пульсирующего кровотока.

В активно работающем мозге возникает потребность в увеличении интенсивности кровоснабжения. Благодаря феномену функциональ­ной (рабочей) гиперемии такая возросшая потребность полностью удовлетворяется, не вступая в противоречие с необходимостью предотвращения головного мозга от избыточности кровенаполнения. Объ­ясняется это специфическими особенностями мозгового кровообра­щения. Во-первых, при повышенной активности всего организма {усиленная физическая работа, эмоциональное возбуждение и т.д.) кровоток в мозге увеличивается примерно на 20—25%, что не оказывает повреждающего действия, поскольку мозг — единствен­ный орган, основной сосудистый бассейн которого располагается на поверхности (система сосудов мягкой мозговой оболочки) и, за счет расстояния до твердой мозговой оболочки, располагает резервом для некоторого кровенаполнения. Во-вторых, физиологически активное состояние человека (включая умственную деятельность) характери­зуется развитием процесса активации в строго соответствующих нервных центрах (корковых представительствах функций), где и формируются доминантные очаги. В таком случае нет необходимости в увеличении суммарного мозгового кровотока, а лишь требуется внутримозговое перераспределение кровотока в пользу активно ра­ботающих зон (областей, участков) мозга. Эта функциональная потребность реализуется путем активных сосудистых реакций, раз­вивающихся в пределах соответствующих сосудистых модулей — структурно-функциональных единиц микрососудистой системы го­ловного мозга. Следовательно, особенностью мозгового кровообра­щения является высокая гетерогенность и изменчивость распреде­ления локального кровотока в микроучастках нервной ткани.

 

Венечное кровообращение

Поперечнополосатая мускулатура сердца в отличие от скелетной характеризуется высоким потреблением энергии аэробного проис­хождения, что обусловливает значительную потребность миокарда в интенсивном кровоснабжении. Доставка артериальной крови в миокард осуществляется венечными (коронарными) артериями, ко­торые, разветвляясь и широко анастомозируя во всех слоях и отделах сердца, образуют густую сеть капилляров и практически каждое мышечное волокно снабжено собственным обменным сосудом. Ве­нозный отток от миокарда осуществляется через широкий венечный (коронарный) синус, открывающийся в полость правого предсердия. Прекращение кровотока по коронарным артериям при их закупорке или значительном спазме приводит к стойкому снижению крово­снабжения сердечной мышцы и к развитию инфаркта миокарда, что сопровождается нарушением нагнетательной функции сердца и может привести к смерти. Поскольку в системе коронарного русла достаточно хорошо представлен модульный принцип организации, аналогичные изменения кровотока в пределах отдельных сосудистых модулей могут проявиться в виде микроинфарктов, осложняющихся нарушением проводимости и сократимости сердечной мышцы.

В состоянии функционального покоя у взрослого человека коро­нарный кровоток составляет 60—70 мл/100 г/мин. От общего сер­дечного выброса кровоснабжение миокарда составляет 4—5 %, т. е. в среднем 200—250 мл/мин. В условиях, когда происходит активация сердечной деятельности, объ­емная скорость кровотока в сердечной мышце возрастает, достигая 350—400 мл/100 г/мин (функциональная гиперемия).

Коронарный кровоток существенно изменяется в зависимости от периода сердечного цикла. В период систолы желудочков интенсив­ность коронарного кровотока (особенно в миокарде левого желудоч­ка) снижается, а во время диастолы увеличивается. Описанные периодические колебания объясняются двумя основными причинами: первая из них обусловлена пульсирующим характером давления в аорте, а вторая (основная) — изменениями напряжения в стенке миокарда. В систолу, когда это напряжение значительно возрастает, сдавливаются сосуды среднего и внутреннего слоев миокарда, дви­жение крови в левой коронарной артерии затруднено. В диастолу напряжение в миокарде падает, проходимость сосудов восстанавли­вается и кровоток увеличивается. В увеличении кровотока через миокард в период диастолы не исключена роль реактивной (посток-клюзионной) гиперемии.

Несмотря на выраженное снижение кровотока во время систолы, метаболические потребности миокарда при нормальной частоте со­кращений сердца полностью удовлетворяются за счет ряда функ­циональных особенностей: 1) высокой экстракцией кислорода мио-глобином мышцы сердца (до 75%); 2) высокой объемной скоростью кровотока в миокарде; 3) высокой растяжимостью коронарных со­судов; 4) фазными колебаниями кровотока в венах сердца проти­воположной направленности, а именно ускорением оттока крови в систолу и замедлением его в диастолу. Вместе с тем в условиях тахикардии, когда происходит укорочение диастолы, эти функцио­нальные особенности в меньшей степени компенсируют систоличе­ское ограничение кровоснабжения сердца.

Регуляция венечного кровообращения. Представлена местными и дистантными механизмами. Для сосудов миокарда характерна высокая выраженность базального тонуса, а также миогенная ме­таболическая активность гладких мышечных клеток (ГМК). Диа­пазон ауторегуляции кровотока в сердечной мышце находится в пределах 70—160 мм рт. ст. Метаболическая регуляция коронарных сосудов проявляет наибольшую активность по отношению к ткане­вому рОг, концентрациям аденозина и метаболитам макроэргических соединений.

Вопрос о характере нервной регуляции коронарного кровообра­щения не до конца ясен. Считают, что симпатические адренерги-ческие нервные волокна вызывают в ряде случаев (физическая работа, стенические отрицательные эмоции) расширение венечных сосудов и увеличение кровотока в миокарде. Наряду с этим в других условиях (астенические отрицательные эмоции, боль и т. п.) на­блюдаются симпатические корона росу живающие эффекты. Причины таких противоположных влияний связывают с избирательной «на­стройкой» чувствительности а- и 0-адренорецепторов, широко пред­ставленных в ГМК коронарных сосудов, а также с концентрацией катехоламинов, которые в зависимости от «дозы-эффекта» вмешиваются в метаболизм ГМК и интерстициальной ткани. Парасимпа­тические холинергические влияния скорее всего опосредованно, уг­нетая сократительную активность сердечной мышцы, снижают ее метаболические потребности и тем самым приводят к снижению кровоснабжения миокарда.

Легочное кровообращение

Важнейшей особенностью организации кровоснабжения легких является ее двухкомпонентный характер, поскольку легкие получают кровь из сосудов малого круга кровообращения и бронхиальных сосудов большого круга кровообращения. Функциональное значение сосудистой системы малого круга кровообращения состоит в обес­печении газообменной функции легких, тогда как бронхиальные сосуды удовлетворяют собственные циркуляторно-метаболические потребности легочной ткани.

Легочная артерия и ее ветви диаметром более 1 мм являются сосудами эластического типа, что способствует значительному сгла­живанию пульсации крови, поступающей во время систолы правого желудочка в легкие. Более мелкие артерии (диаметром от 1 мм до 100 мкм) относят к артериям мышечного типа. Они обусловливают величину гидродинамического сопротивления в малом круге крово­обращения. В самых мелких артериях (диаметром менее 100 мкм) и в артериолах содержание ГМК прогрессивно снижается и в арте-риолах диаметром менее 45 мкм они полностью отсутствуют. По­скольку безмышечные артериолы тесно связаны с окружающей аль­веолярной паренхимой, интенсивность кровоснабжения легких не­посредственно зависит от интенсивности вентиляции альвеол.

Капилляры легких образуют на поверхности альвеол очень густую сеть и при этом на одну альвеолу приходится несколько капилляров. В связи с тем что стенки альвеол и капилляров тесно контактируют, образуя как бы единую альвеолярно-капиллярную мембрану, созда­ются наиболее благоприятные условия для эффективных вентиля-ционно-перфузионных взаимоотношений. В условиях функциональ­ного покоя у человека капиллярная кровь находится в контакте с альвеолярным воздухом в течение примерно 0,75 с. При физической работе продолжительность контакта укорачивается более чем в два раза и составляет в среднем 0,35 с.

В результате слияния капилляров образуются характерные для легочной сосудистой системы безмышечные посткапиллярные вену-лы, трансформирующиеся в венулы мышечного типа и далее в легочные вены. Особенностью сосудов венозного отдела являются их тонкостенность и слабая выраженность ГМК. Структурные осо­бенности легочных сосудов, в частности артерий, определяют боль­шую растяжимость сосудистого русла, что создает условия для более низкого сопротивления (приблизительно в 10 раз меньше, чем в системе большого круга кровообращения), а следовательно, более низкого кровяного давления. В связи с этим система малого круга кровообращения относится к области низкого давления. Давление в легочной артерии составляет в среднем 15—25 мм рт, ст., а в венах — 6—8 мм рт. ст. Градиент давления равен примерно 9—17 мм рт. ст., т.е. значительно меньше, чем в большом круге крово­обращения. Несмотря на это, повышение системного АД или же значительное увеличение кровотока (при активной физической ра­боте человека) существенно не влияет на трансмуральное давление в легочных сосудах из-за их большей растяжимости. Большая рас­тяжимость легочных сосудов определяет еще одну важную функ­циональную особенность этого региона, заключающуюся в способ­ности депонировать кровь и тем самым предохранять легочную ткань от отека при увеличении минутного объема кровотока.

Минутный объем крови в легких соответствует минутному объему крови в большом круге кровообращения и в условиях функциональ­ного покоя составляет в среднем 5 л/мин. При активной физической работе этот показатель может возрасти до 25 л/мин.

Распределение кровотока в легких характеризуется неравномер­ностью кровоснабжения верхних и нижних долей, так как низкое внутрисосудистое давление определяет высокую зависимость легоч­ного кровотока от гидростатического давления. Так, в вертикальном положении верхушки легкого расположены выше основания легочной артерии, что практически уравнивает АД в верхних долях легких с гидростатическим давлением. По этой причине капилляры верхних долей слабо перфузируются, тогда как в нижних долях благодаря суммированию АД с гидростатическим давлением кровоснабжение обильное. Описанная особенность легочного кровообращения играет важную роль в установлении перфузионно-вентиляционных отно­шений в дыхательной системе.

Интенсивность кровоснабжения легких зависит от циклических изменений плеврального и альвеолярного давлений в различные фазы дыхательного цикла. Во время вдоха, когда плевральное и альвеолярное давление уменьшаются, происходит пассивное расши­рение крупных внелегочных и внутрилегочных сосудов, сопротив­ление сосудистого русла дополнительно снижается и кровоснабжение легких в фазу вдоха увеличивается.

Регуляция легочного кровообращения. Местная регуля­ция легочного кровотока в основном представлена метаболическими факторами, ведущая роль среди которых принадлежит рО2 и рСО2. При снижении рО2 и/или повышении рСОг происходит местная вазоконстрикция легочных сосудов. Следовательно, особенностью местной регуляции кровоснабжения легких является строгое соот­ветствие интенсивности локального кровотока уровню вентиляции данного участка легочной ткани.

Нервная регуляция легочного кровообращения осуществ­ляется в основном симпатическими сосудосуживающими волокнами. Природа сосудорасширяющих нервных влияний пока не выяснена. Система легочного кровообращения выделяется среди всех регионов наибольшей функциональной связью с центральной регуляцией си­стемной гемодинамики в большом круге кровообращения. Известно, что рефлексы саморегуляции кровообращения с баро- и хемо и барорецепторов сонного (каротидного) синуса сопровождаются активными из­менениями легочного кровотока. В свою очередь, сосуды малого круга кровообращения являются мощной рефлексогенной зоной, порождающей рефлекторные изменения в сердечно-сосудистой сис­теме.

Гуморальная регуляция легочного кровообращения в значительной степени обусловлена влиянием таких биологически активных веществ, как ангиотензин, серотонин, гистамин, проста-гландины, которые вызывают в основном вазоконстрикцию в легких и повышение кровяного давления в легочных артериях. Активность других, широко распространенных в организме гуморальных фак­торов (адреналин, норадреналин, ацетилхолин) в системе регуляции легочного кровотока выражена в меньшей степени.

 

Заключение

 

. Сопоставление кровотока и потребления O2 в различных органах показывает, что чем интенсивнее обмен веществ в том или ином органе, тем выше расход крови в его сосудах (хотя, если исходить из значений этих параметров, выраженных в процентах, прямой зависимости между этими величинами нет).

Регуляция регионального кровообращения. Приспособление местного кровотока к функциональным потребностям органов осуществляется главным образом путем изменений сопротивления току, сопровождающих изменения просвета сосудов, т. е. путем регуляции гидродинамического сопротивления. Поскольку гидродинамическое сопротивление обратно пропорционально радиусу сосудов в четвертой степени, изменения площади их просвета значительно сильнее влияют на кровоток, чем изменения давления

Теоретически возможный диапазон изменений объемной скорости кровотока в разных органах различен; он шире в органах, функциональные потребности которых значительно варьируют (скелетных мышцах, желудочно–кишечном тракте, печени, коже). Напротив, в таких жизненно важных органах, как головной мозг и почки,

потребности которых всегда высоки и изменяются незначительно, Кровоток поддерживается на почти постоянном уровне при помощи специальных регуляторных механизмов. В таких органах даже при значительных колебаниях артериального давления и сердечного выброса Кровоток изменяется очень мало в определенных пределах.

Приспособительные изменения кровотока в периферических сосудах обусловлены как локальными механизмами, так и гуморальными и нервными факторам. Влияния всех этих факторов на гладкую мускулатуру сосудов в разных органах различны. Часто несколько факторов действуют одновременно, оказывая синергическое (а иногда антагонистическое) действие на сосудистый тонус.На степень сокращения мускулатуры сосудов оказывают прямое влияние некоторые вещества, необходимые для клеточного метаболизма (например, O2 ) либо вырабатывающиеся в процессе метаболизма. Это влияние осуществляется за счет различных механизмов, многие из которых еще не раскрыты. Все они в совокупности обеспечивают метаболическую ауторегуляцию периферического кровообращения. Важнейшее функциональное значение метаболической ауторегуляции состоит в том, что она приспосабливает местный кровоток к функциональным потребностям органа. При этом метаболические сосудорасширяющие влияния доминируют над нервными сосудосуживающими эффектами и в некоторых случаях полностью подавляют их.

Недостаток кислорода. Снижение парциального давления O2 в крови приводит к расширению сосудов. Предполагается, что изменения локального кровотока, связанные с местными метаболическими сдвигами, обусловлены изменениями напряжения O 2 в артериолах: при усиленном метаболизме это напряжение снижается, и наоборот. Для этого требуется, чтобы кислород мог диффундировать из артериолы (возможность такой диффузии экспериментально доказана) и реакция различных отделов артериолы изменялась в соответствии с изменениями градиента напряжения O2 по ее длине.

Продукты метаболизма. Расширение сосудов наступает также при местном повышении напряжения СO2 и/или концентрации ионов H+. Из других метаболитов, образующихся в больших количествах при физической нагрузке, следует отметить молочную кислоту, оказывающую сосудорасширяющий эффект, опосредованный изменениями рН. Слабым сосудорасширяющим действием обладает пируват, сильным –АТФ, АДФ, АМФ и аденозин. Однако все эти вещества не могут вызвать такое выраженное расширение, какое наблюдается при мышечной деятельности. Вероятно, сосудорасширяющее действие оказывают и другие метаболиты. К факторам, влияющим на сосудистый тонус,

предположительно относят также изменения внеклеточной концентрации осмотически активных веществ (в частности, калия), так как такие вещества наиболее быстро высвобождаются из работающих мышц.

Влияние метаболических процессов на диаметр сосудов может быть связано непосредственно с диффузией веществ, поскольку артериолы проходят внутри функционирующих тканей, т. е. в непосредственной близости от капилляров. Для объяснения реакций, обусловленных метаболическими факторами, нет необходимости привлекать «восходящие» аксон–рефлексы от капилляров области выделения метаболитов на артериолы.

Реактивная гиперемия. Если в эксперименте временно прекратить или уменьшить кровоснабжение мышцы, то восстановление кровотока сопровождается превышением его исходной скорости. Это так называемая реактивная гиперемия, степень которой. зависит от скорости метаболизма в ткани и от длительности ишемии. Возможно, реактивная гиперемия обусловлена теми же механизмами, что и метаболическая вазодилатация. Если в эксперименте перенести венозную кровь от работающей или ишемизированной мышцы в сосуды, снабжающие покоящуюся мышцу, они расширяются. Это свидетельствует о гуморальной природе сосудорасширяющих факторов.

Миогенная ауторегуляция. Некоторые сосуды способны поддерживать постоянную объемную скорость кровотока при колебаниях давления. Эту способность можно считать одним из видов миогенной («механогенной») ауторегуляции; она обусловлена сокращениями гладких мышц сосудов при повышении давления и их расслаблением при его понижении. Такая ауторегуляция особенно хорошо выражена в почечных сосудах, однако она действует и в сосудах головного мозга, сердца, печени, кишечника и скелетных мышц. В сосудах кожи она не обнаружена.

Эндогенная вазомоторика. В артериолах, метартериолах и прекапиллярных сфинктерах наблюдается эндогенная вазомоторика–ритмичные колебания тонуса. Эти колебания не участвуют в приспособлении кровотока к потребностям тканей. В результате таких ритмичных сокращений мышц сосудов и сопутствующих изменений гидродинамического сопротивления сосудов в последних возникают ритмичные колебания скорости кровотока. Частота и амплитуда этих колебаний могут быть различными. Эндогенная вазомоторика обусловлена автоматизмом сокращений гладкомышечных волокон и не зависит от вегетативных нервных влияний.

Нервная регуляция

Нервная регуляция просвета сосудов осуществляется вегетативной нервной системой. Сосудодвигательные нервы относятся преимущественно к ее симпатическому отделу, хотя в некоторых сосудистых реакциях участвуют и парасимпатические волокна. Вегетативные нервы иннервируют все кровеносные сосуды, кроме капилляров, однако плотность и функциональное значение этой иннервации широко варьируют в различных органах сосудистой системы.

Большая часть постганглионарных симпатических волокон выделяет медиатор норадреналин (адренергические волокна). Холинергические симпатические волокна будут рассмотрены ниже.

Симпатические адренергические сосудосуживающие волокна. Сосудосуживающими называют эфферентные волокна, при повышении импульсации в которых увеличивается активное напряжение мышц сосудов. Они относятся к симпатическому отделу вегетативной нервной системы. Сосудодвигательные волокна обильно иннервируют мелкие артерии и артериолы кожи, почек и чревной области. В головном мозгу и скелетных мышцах эти сосуды иннервированы относительно слабо. Плотность иннервации вен обычно соответствует таковой артерий, хотя в целом «плотность» иннервации вен значительно меньше. Медиатором в симпатическом нервно–мышечном синапсе служит норадреналин, всегда вызывающий сокращение мускулатуры.

Степень сокращения мышц сосудов зависит непосредственно от частоты импульсации в эфферентных сосудодвигательных нервах. Сосудистый тонус покоя поддерживается благодаря постоянному поступлению по этим нервам импульсов с частотой 1–3 в 1с (так называемая тоническая импульсация). При частоте импульсов, равной всего около 10 в 1с, наблюдается максимальное сужение сосудов. Таким образом, увеличение импульсации в сосудодвигательных нервах приводит к вазоконстрикции, а уменьшение–к вазодилатации, причем последняя ограничена базальным тонусом сосудов (т.е. тем тонусом, который наблюдается в отсутствие импульсации в сосудосуживающих нервах либо при их перерезке; см. ниже). Поскольку даже в покое в сосудодвигательных волокнах имеется некоторая активность, сосудистый тонус–нейрогенное сокращение мышц сосудов–может быть изменен как в сторону вазоконстрикции, так и в сторону вазодилатации; последняя происходит без участия специальных сосудорасширяющих нервов. В отсутствие сосудосуживающих нервных влияний периферическое сопротивление определяется базальным тонусом сосудов. Этот тонус в разных сосудистых областях различен. Так, в сосудах кожи базальный тонус (а следовательно, и периферическое сопротивление) меньше, чем в сосудах мышц. В принципе кожные и мышечные сосуды одинаково реагируют на раздражение вазоконстрикторных волокон, однако при одной и той же частоте стимуляции этих волокон кожные сосуды суживаются в большей степени. В связи с этим периферическое сопротивление (а следовательно, и величина кровотока) в сосудах кожи может варьировать в более широких пределах под действием изменений импульсации в сосудосуживающих нервах, чем сопротивление сосудов мышц; в то же время мышечные сосуды в значительно большей степени способны к реакциям расширения, механизм которых в настоящее время остается неясным. К возможным причинам расширения сосудов мышц относят действие симпатических холинергических вазодилататоров (см. ниже), а также возбуждение β–рецепторов этих сосудов катехоламинами (см. ниже).

Значение тонической активности сосудосуживающих нервов (тонуса покоя) для кровообращения наглядно проявляется, например, при спинномозговой анестезии или воздействиях ганглиоблокаторами, которыми устраняется эта активность. При этом вследствие расширения сосудов среднее артериальное давление падает до 40–60 мм рт.ст., т.е. до такого значения, при котором не обеспечивается достаточное кровоснабжение органов.

После пересечения симпатических нервов (симпатэктомии) в денервированных участках также наблюдается вазодилатация. При этом диаметр сосудов целиком определяется базальным тонусом. Этот тонус вначале низок, но через несколько дней после симпатэктомии он начинает нарастать и спустя несколько недель почти достигает исходного уровня (хотя волокна при этом не регенерируют). Такое увеличение базального тонуса связано, возможно, с тем, что после денервации сосудов повышается их чувствительность к катехоламинам и другим сосудосуживающим веществам, и степень сокращения мускулатуры сосудов возрастает.

Симпатические сосудорасширяющие волокна. У различных видов животных (в частности, у собак и кошек) существует особая система, иннервирующая только прекапиллярные сосуды скелетных мышц. Она берет начало от коры головного мозга. В покое импульсация в этих волокнах отсутствует. Их раздражение сопровождается расширением сосудов, причем в отличие от метаболической вазодилатации увеличение кровотока при этом обеспечивается, по–видимому, расширением не истинных капилляров, а артериовенозных анастомозов, метартериол или даже более крупных артериальных сосудов. Такие волокна возбуждаются при эмоциональных реакциях – тревоге, защите, страхе или ярости. Если в дальнейшем начинается мышечная деятельность, то это первоначальное расширение сосудов сменяется (или дополняется) вазодилатацией метаболического происхождения. У человека такие холинергические сосудорасширяющие волокна пока не обнаружены, хотя расширение сосудов, предшествующее физической нагрузке, у него наблюдается.

Парасимпатические холинергические сосудорасширяющие волокна. Сосуды наружных половых органов иннервируются парасимпатическими холинергическими волокнами. Последние активируются при половом возбуждении и вызывают выраженное расширение сосудов этих органов и увеличение кровотока в них. Холинергические сосудорасширяющие волокна иннервируют также мелкие артерии мягкой мозговой оболочки головного мозга. Функция этих волокон до сих пор не ясна.

Не существует единого мнения о том, иннервируют ли подобные волокна другие отделы сосудистого русла. Считается, что расширение сосудов желез пищеварительного тракта при раздражении секреторных нервов обусловлено главным образом влиянием кининов, выделяющихся при деятельности этих желез (см. ниже). Однако в данном случае нельзя полностью исключить и участие специфических парасимпатических холинергических сосудорасширяющих волокон.

Аксон–рефлексы. Механическое или химическое раздражение кожи может сопровождаться местным расширением сосудов. Эту реакцию относят к так называемым аксон–рефлексам. Было высказано предположение, что при раздражении тонких немиелинизированных кожных ноцицептивных волокон возбуждение распространяется не только в центростремительном направлении, т.е. к спинному мозгу (ортодромно), но также по эфферентным коллатеральным волокнам к артериолам иннервируемого данным нервом участку кожи (антидромно). Такая вазодилатация не связана с симпатической иннервацией кожных сосудов: она исчезает только после дегенерации ноцицептивных волокон, вызванной их отсечением от спинного мозга. В то же время убедительных нейрофизиологических данных в пользу подобных атипичных «аксон–рефлексов» нет; вазодилатация вполне может быть обусловлена прямыми влияниями (выделением сосудорасширяющих веществ типа АТФ или вещества Р) из мембран–рецепторов. При этом нет необходимости предполагать наличие эфферентных коллатералей у афферентных волокон.

При длительном холодовом воздействии первоначальное сужение сосудов пальцев рук и ног сменяется их периодическим расширением. Некоторые исследователи полагают, что такие реакции также обусловлены ноцицептивными аксон–рефлексами. В пальцах сосуды расположены очень тесно, что связано с их участием в терморегуляции. При расширении этих сосудов повышается температура в окружающих тканях, и это предохраняет ткани от повреждения. Аксон–рефлексы на другие раздражители, возможно, служат механизмом защиты от местных повреждающих воздействий. Полагают, что аксон–рефлексы участвуют и в трехфазных последовательных реакциях организма на местные раздражители нарастающей интенсивности (например, в реакциях кожи на удар тупым предметом). При этом наблюдается следующая последовательность реакций: 1) местное покраснение кожи в области нанесения механического раздражения (механизм–расширение артериол); 2) гиперемия–более яркое покраснение окружающих тканей, появляющееся спустя примерно 30 с после раздражения (механизм–аксон–рефлекс); 3) местный отек или образование волдыря (механизм–повреждение стенок капилляров).



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: