Электровакуумные приборы




Электровакуумными приборами называются электронные приборы, принцип

действия которых основан на движении электронов в вакууме при работе в различных электрических полях. Принцип действия всех электровакуумных приборов основан на явлении электронной эмиссии.

– термоэлектронная эмиссия,

– автоэлектронная (или «холодная») эмиссия – это эмиссия под воздействием сильных электрических полей,

– фотоэлектронная эмиссия,

– вторичная эмиссия.

Если электрон обладает достаточной скоростью и кинетической энергией и ударяется при этом в поверхность материала, он отдаёт свою энергию электронам материала, которые вылетают с его поверхности. Причём каждый ударяющий электрон, который называют первичным электроном, может «выбивать» с поверхности материала несколько вторичных электронов.

Вакуумный диод имеет два основных электрода – катод и анод. Катод – это электрод, с которого происходит термоэлектронная эмиссия. Катоды бывают двух видов – с прямым и косвенным накалом. Катоды с косвенным накалом обычно выполняются в виде трубки, внутри которой расположена спираль, называемая нитью накала. На неё подаётся напряжение накала, она разогревает катод для получения термоэлектродной эмиссии. Катоды прямого накала – это катоды, у которых напряжение накала подаётся непосредственно на катод.

Анод – это электрод, находящийся обычно под положительным потенциалом, к которому стремятся электроны, вылетевшие из катода.

Принцип действия.

При подаче на анод положительного напряжения между катодом и анодом создаётся ускоряющее электрическое поле для электронов, вылетающих из катода. Они прилетают к аноду, и через диод протекает прямой ток анода Ia. При подаче на анод отрицательного напряжения относительно катода для электронов, вылетающих из катода, образуется тормозящее электрическое поле, они будут прижиматься к катоду и ток анода будет равен нулю. Отличие электровакуумных диодов от полупроводниковых заключается в том, что обратный ток в них полностью отсутствует.

Триодом называется электровакуумный прибор, у которого помимо анода и катода имеется третий электрод, который называется сеткой.

Сетка в триоде имеет вид спирали и располагается между анодом и катодом, ближе к катоду.

Условное графическое изображение триода изображено на рисунке:

При напряжении на сетке, равном нулю, сетка не оказывает воздействия на поле анода, и в цепи анода будет протекать ток.

При положительных напряжениях на сетке между нею и катодом возникает поле сетки, линии напряжённости которого направлены так же, как и у анода. Результирующее действие поля на электроны усиливается, и ток анода возрастает. Положительно заряженная сетка перехватывает часть электронов, за счёт чего возникает ток сетки Ic.

При подаче отрицательного напряжения на сетку поле сетки будет противодействовать полю анода, за счёт чего анодный ток уменьшается. При достаточно больших отрицательных напряжениях на сетке между катодом и сеткой создаётся настолько сильное тормозящее электрическое поле, что электроны, вылетающие из катода, будут прижиматься опять к катоду и ток анода будет равен нулю.

Напряжение на сетке, при котором Ia становится равным нулю, называется напряжением запирания или напряжением отсечки.

Вывод: изменяя напряжение на сетке, можно управлять током анода, и поэтому сетка в триоде получила название управляющей.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: