Подробное рассмотрение одного периода работы цифрового тракта микросхемы.




Появление отпирающего импульса на базе выходного транзистора верхнего (VT1) либо нижнего (VT2) канала определяется логикой работы элементов DD5, DD6 ("2ИЛИ-НЕ") и состоянием элементов DD3, DD4 ("2-Й"), которое, в свою очередь, определяется состоянием триггера DD2.

Логика работы элемента 2-ИЛИ-НЕ, как известно, заключается в том, что на выходе такого элемента появляется напряжение высокого уровня (логическая 1) в том лишь единственном случае, если на обоих его входах присутствуют низкие уровни напряжений (логические 0). При остальных возможных комбинациях входных сигналов на выходе элемента 2 ИЛИ-НЕ присутствует низкий уровень напряжения (логический 0). Поэтому если на выходе Q триггера DD2 присутствует логическая 1 (момент t1 диаграммы 5 рис.13), а на выходе /Q - логический 0, то на обоих входах элемента DD3 (2И) окажутся логические 1 и, следовательно, логическая 1 появится на выходе DD3, а значит и на одном из входов элемента DD5 (2ИЛИ-НЕ) верхнего канала. Следовательно, независимо от уровня сигнала, поступающего на второй вход этого элемента с выхода элемента DD1, состоянием выхода DD5 будет логический О, и транзистор VT1 останется в закрытом состоянии. Состоянием же выхода элемента DD4 будет логический 0, т.к. логический 0 присутствует на одном из входов DD4, поступая туда с выхода /Q триггера DD2. Логический 0 с выхода элемента DD4 поступает на один из входов элемента DD6 и обеспечивает возможность прохождения импульса через нижний канал.

Этот импульс положительной полярности (логическая 1) появится на выходе DD6, а значит и на базе VT2 на время паузы между выходными импульсами элемента DD1 (т.е. на время, когда на выходе DD1 присутствует логический 0 - интервал t1-t2 диаграммы 5 рис.13). Поэтому транзистор VT2 открывается и на его коллекторе появляется импульс выбросом вниз от положительного уровня (в случае включения по схеме с общим эмиттером).

Начало следующего выходного импульса элемента DD1 (момент t2 диаграммы 5 рис.13) не изменит состояния элементов цифрового тракта микросхемы, за исключением элемента DD6, на выходе которого появится логический 0, и поэтому транзистор VT2 закроется. Завершение выходного импульса DD1 (момент t3) обусловит изменение состояния выходов триггера DD2 на противоположное (логический 0 - на выходе Q, логическая 1 - на выходе /Q). Поэтому поменяется состояние выходов элементов DD3, DD4 (на выходе DD3 - логический 0, на выходе DD4 - логическая 1). Начавшаяся в момент t3 пауза на выходе элемента DD1 обусловит возможность открывания транзистора VT1 верхнего канала. Логический 0 на выходе элемента DD3 "подтвердит" эту возможность, превращая ее в реальное появление отпирающего импульса на базе транзистора VT1. Этот импульс длится до момента t4, после чего VT1 закрывается, и процессы повторяются.

Таким образом основная идея работы цифрового тракта микросхемы заключается в том, что длительность выходного импульса на выводах 8 и 11 (либо на выводах 9 и 10) определяется длительностью паузы между выходными импульсами элемента DD1. Элементы DD3, DD4 определяют канал прохождения импульса по сигналу низкого уровня, появление которого чередуется на выходах Q и /Q триггера DD2, управляемого тем же элементом DD1. Элементы DD5, DD6 представляют собой схемы совпадения по низкому уровню.

Для полноты описания функциональных возможностей микросхемы следует отметить еще одну важную ее особенность. Как видно из функциональной схемы рисунке входы элементов DD3, DD4 объединены и выведены на вывод 13 микросхемы. Поэтому если на вывод 13 подана логическая 1, то элементы DD3, DD4 будут работать как повторители информации с выходов Q и /Q триггера DD2. При этом элементы DD5, DD6 и транзисторы VT1, VT2 будут переключаться со сдвигом по фазе на половину периода, обеспечивая работу силовой части ИБП, построенной по двухтактной полумостовой схеме. Если на вывод 13 будет подан логический 0, то элементы DD3, DD4 будут заблокированы, т.е. состояние выходов этих элементов не будет изменяться (постоянный логический 0). Поэтому выходные импульсы элемента DD1 будут воздействовать на элементы DD5, DD6 одинаково. Элементы DD5, DD6, а значит и выходные транзисторы VT1, VT2, будут переключаться без сдвига по фазе (одновременно). Такой режим работы управляющей микросхемы используется в случае, если силовая часть ИБП выполнена по однотактной схеме. Коллекторы и эмиттеры обоих выходных транзисторов микросхемы в этом случае объединяются с целью умощнения.

В качестве "жесткой" логической единицы в двухтактных схемах используется выходное напряжение внутреннего источника микросхемы Uref (вывод 13 микросхемы объединяется с выводом 14). Теперь рассмотрим работу аналогового тракта микросхемы.

Состояние выхода DD1 определяется выходным сигналом компаратора ШИМ DA2 (диаграмма 4), поступающим на один из входов DD1. Выходной сигнал компаратора DA1 (диаграмма 2), поступающий на второй вход DD1, не влияет в нормальном режиме работы на состояние выхода DD1, которое определяется более широкими выходными импульсами ШИМ - компаратора DA2.

Кроме того, из диаграмм рис.13 видно, что при изменениях уровня напряжения на неинвентирующем входе ШИМ компаратора (диаграмма 3) ширина выходных импульсов микросхемы (диаграммы 12, 13) будет пропорционально изменяться. В нормальном режиме работы уровень напряжения на неинвентирующем входе компаратора ШИМ DA2 определяется только выходным напряжением усилителя ошибки DA3 (т.к. оно превышает выходное напряжение усилителя DA4), которое зависит от уровня сигнала обратной связи на его неинвентирующем входе (вывод 1 микросхемы). Поэтому при подаче сигнала обратной связи на вывод 1 микросхемы ширина выходных управляющих импульсов будет изменяться пропорционально изменению уровня этого сигнала обратной связи, который, в свою очередь, изменяется пропорционально изменениям уровня выходного напряжения ИБП, т.к. обратная связь заводится именно оттуда.

Промежутки времени между выходными импульсами на выводах 8 и 11 микросхемы, когда оба выходных транзистора VT1 и VT2 ее закрыты, называются "мертвыми зонами". Компаратор DA1 называется компаратором "мертвой зоны", т.к. он определяет минимально возможную ее длительность.

Подробное пояснение.

Из временных диаграмм рис.13 следует, что если ширина выходных импульсов ШИМ-компаратора DA2 будет в силу каких-либо причин уменьшаться, то начиная с некоторой ширины этих импульсов выходные импульсы компаратора DA1 станут шире выходных импульсов ШИМ-компаратора DA2 и начнут определять состояние выхода логического элемента DD1, а значит и. ширину выходных импульсов микросхемы. Другими словами, компаратор DA1 ограничивает ширину выходных импульсов микросхемы на некотором максимальном уровне. Уровень ограничения определяется потенциалом на неинвентирующем входе компаратора DA1 (вывод 4 микросхемы) в установившемся режиме. Однако с другой стороны, потенциал на выводе 4 будет определять диапазон широтной регулировки выходных импульсов микросхемы. При увеличении потенциала на выводе 4 этот диапазон сужается. Самый широкий диапазон регулировки получается тогда, когда потенциал на выводе 4 равен 0.

Однако в этом случае появляется опасность, связанная с тем, что ширина "мертвой зоны" может стать равной 0 (например, в случае значительного возрастания потребляемого от ИБП тока). Это означает, что управляющие импульсы на выводах 8 и 11 микросхемы будут следовать непосредственно друг за другом. Поэтому может возникнуть ситуация, известная под названием "пробой по стойке". Она объясняется инерционностью силовых транзисторов инвертора, которые не могут открываться и закрываться мгновенно. Поэтому, если одновременно на базу открытого до этого транзистора подать запирающий сигнал, а на базу закрытого транзистора – отпир ающий (т.е. с нулевой "мертвой зоной"), то получится ситуация, когда один транзистор еще не закрылся, а другой уже открыт. Тогда и возникает пробой по транзисторной стойке полумоста, который заключается в протекании сквозного тока через оба транзистора. Ток этот, как видно из схемы рис. 5, минует первичную обмотку силового трансформатора и практически ничем не ограничен. Защита по току в этом случае не работает, т.к. ток не протекает через токовый датчик (на схеме не показан; конструкция и принцип действия применяемых токовых датчиков будут подробно рассмотрены в последующих разделах), а значит, этот датчик не может выдать сигнал на схему управления. Поэтому сквозной ток достигает очень большой величины за очень короткий промежуток времени.

Это приводит к резкому возрастанию выделяющейся на обоих силовых транзисторах мощности и практически мгновенному выходу их из строя (как правило, пробой). Кроме того, броском сквозного тока могут быть выведены из строя диоды силового выпрямительного моста. Процесс этот заканчивается перегоранием сетевого предохранителя, который из-за своей инерционности не успевает защитить элементы схемы, а лишь защищает от перегрузки первичную сеть.

 

 

Поэтому управляющее напряжение; подаваемое на базы силовых транзисторов должно быть сформировано таким образом, чтобы сначала надежно закрывался бы один из этих транзисторов, а уже потом открывался бы другой. Другими словами, между управляющими импульсами, подаваемыми на базы силовых транзисторов обязательно должен быть временной сдвиг, не равный нулю ("мертвая зона"). Минимальная допустимая длительность "мертвой зоны" определяется инерционностью применяемых в качестве силовых ключей транзисторов.

Архитектура микросхемы позволяет регулировать величину минимальной длительности "мертвой зоны" с помощью потенциала на выводе 4 микросхемы. Потенциал этот задается с помощью внешнего делителя, подключаемого к шине выходного напряжения внутреннего опорного источника микросхемы Uref.

В некоторых вариантах ИБП такой делитель отсутствует. Это означает, что после завершения процесса плавного пуска (см. ниже) потенциал на выводе 4 микросхемы становится равным 0. В этих случаях минимально возможная длительность "мертвой зоны" все же не станет равной 0, а будет определяться внутренним источником напряжения DA7 (0,1В), который подключен к неинвертирующему входу компаратора DA1 своим положительным полюсом, и к выводу 4 микросхемы - отрицательным. Таким образом, благодаря включению этого источника ширина выходного импульса компаратора DA1, а значит и ширина "мертвой зоны", ни при каких условиях не может стать равной 0, а значит "пробой по стойке" будет принципиально невозможен.

Другими словами, в архитектуру микросхемы заложено ограничение максимальной длительности ее выходного импульса (минимальной длительности "мертвой зоны").

Если имеется делитель, подключенный к выводу 4 микросхемы, то после плавного пуска потенциал этого вывода не равен 0, поэтому ширина выходных импульсов компаратора DA1 определяется не только внутренним источником DA7, но и остаточным (после завершения процесса плавного запуска) потенциалом на выводе 4. Однако при этом, как было сказано выше, сужается динамический диапазон широтной регулировки ШИМ компаратора DA2.

 


Рис. 13. Работа ИМС TL494 в номинальном режиме: U3, U4, U5 - напряжения на выводах 3, 4, 5.

 


Микросхема TL494

Микросхема состоит из ШИМ - контроллера и линейки компараторов, которые отслеживают выходные напряжения и участвуют в формировании сигнала P.G. и согласующего каскада состоящего из трансформатора и транзисторных ключей. В качестве ШИМ - контроллера используется - микросхема ТL494 (ТL493, ТL495) фирмы TEXAS INSTRUMENTS или ее аналог - микросхема МРС494 фирмы NEC. Внешний вид и разводка ножек представлены на рис. 1, а структурная схема ТL494 приведена на рис.2.

Рис. 1

Рис. 2

ИМС будет запускаться в том случае если на 12 ножку подать питающее напряжение в пределах от +7 до 40В. Выводы 1 и 2 - соответственно прямой и инвертирующий входы усилителя ошибки по сигналу обратной связи, вывод 4 - вход регулировки "мертвой зоны" (это время, когда оба выходных транзистора микросхемы закрыты даже при максимальной потребляемой мощности), выводы 5 (Ст) и 6 (Rт) служат для подключения внешних элементов внутреннего генератора пилообразного напряжения, вывод 7 - общий, выводы 8 и 9 - коллектор и эмиттер первого транзистора, выводы 11 и 10 - соответственно коллектор и эмиттер второго транзистора, вывод 12 - напряжение питания, вывод 13 - выбор режима работы (одно- или двухтактный режим работы). Если на этом выводе присутствует положительное напряжение 2,4...5 В (логическая "1" для ТТL - схем) - осуществляется двухтактный режим работы, транзисторы Q1 и Q2 открываются поочередно, выходные импульсы следуют друг относительно друга со сдвигом по фазе. Если на этом выводе напряжение составляет 0...0,4 В (логический "0" для ТТL - схем) - однотактный режим, при этом транзисторы можно включать параллельно для увеличения выходного тока. Вывод 14 - выход опорного напряжения (+5 В) от встроенного стабилизированного источника опорного напряжения, выводы 16 и 15 – соответственно, прямой и инвертирующий входы усилителя ошибки по сигналу ограничения тока. ШИМ - контроллер работает на фиксированной частоте и содержит встроенный генератор пилообразного напряжения, который требует для установки частоты только двух внешних компонентов - резистора Rт, и конденсатора Ст. Частота генерации определяется по формуле:

t=1,1/RтCт

По функциональным узлам, входящим в состав микросхемы, ее можно разбить на аналоговую часть и цифровую.

К аналоговой части относятся усилители ошибок DA3, DA1.

- компараторы DA1,DA2

- генератор пилообразного напряжения DA6

- вспомогательные источники DA5, DA7, DA8

Все остальные элементы, в том числе и выходные транзисторы образуют цифровую часть.

Из временных диаграмм приведенных на рис. 3 видно, что моменты появления выходных управляющих импульсов, а также их длительность определяется состоянием выхода логического элемента DD1. Остальная логика выполняет лишь вспомогательную функцию, разделения выходных импульсов на два канала. Оба транзистора имеют открытые коллекторы и эмиттеры, поэтому их можно подключать двояко. При включении с общим эмиттером выходные импульсы направлены выбросами вниз от положительного уровня. С общим коллектором выбросами вверх. Все остальные импульсы направлены выбросами вверх. Триггер DD2 является двухтактным динамическим D-триггером. Принцип его работы в следующем. Каждый из выходных импульсов элемента DD1 своим отрицательным фронтом переключает триггер DD2 и этим меняет канал прохождения следующего импульса, т. е. исключает появление двух отпирающих импульсов за один период работы.

ЦИФРОВАЯ ЧАСТЬ.

Рассмотрим работу одного периода цифрового тракта (см. рис 3.) Допустим что на одном из выходов DD2 например Q присутствует логическая единица, а на втором /Q логический ноль, в этом случае на обоих выходах DD3 будут висеть единицы, следовательно на выходе DD5 будет логический ноль, т.к. с выхода DD5 можно получить единицу только в случае если на обоих входах DD5 будут висеть нули. По этой причине транзистор VT5 будет закрыт. Состоянием выхода DD4 будет логический ноль, который приходит на один из входов DD6, тем самим обеспечивает возможность прохождения импульса по нижнему каналу. Выходной импульс появится на транзисторе VT2 во время паузы между выходными импульсами элемента DD1.(т.е. на время когда на выходе DD1 присутствует ноль-интервал диаграммы t1-t2). Начало следующего выходного импульса элемента DD1 (момент t2 диаграммы) не изменит состояние элементов цифрового тракта микросхемы, за исключением элемента DD6, на выходе которого появится логический ноль, поэтому транзистор VT2 закроется. Завершение выходного импульса DD1 (моментt3) обусловит изменение состояние выходов DD2 на противоположное. Поэтому поменяется состояние выходов элементов DD3, DD4. Начавшаяся пауза на выходе DD1 обусловит прохождение выходного импульса по верхнему каналу. Таким образом, основная идея работы цифрового тракта заключается в том, что длительность выходного импульса определяется длительностью паузы между выходными импульсами DD1. Если на выход 13 микросхемы подать логическую единицу, то транзисторы VT1и VT2, будут следовать друг относительно друга со сдвигом по фазе на половину периода. Такой режим работы используется в том случае, если работа БП выполнена по двухтактной схеме. Если на ножку 13 подать логический ноль, то элементы микросхемы DD3 и DD4, будут заблокированы, т.е. состояние их выходов не будет изменятся. Выходные импульсы будут следовать без сдвига по фазе. Такой режим работы используется, в случае если силовая часть блока питания выполнена по однотактной схеме. При такой реализации коллекторы и эмиттеры транзисторов объединены с целью умощнения. В качестве единицы подаваемой на 13 ножку микросхемы обычно подается напряжение с 14 вывода (от источника внутреннего стабилизированного напряжения.)

АНАЛОГОВАЯ ЧАСТЬ.

Состояние выхода DD1 определяется выходным сигналом компаратора ШИМ DA2 диаграмма 4, поступающим на один из входов DD1. Выходной сигнал компаратора DA1 (диаграмма 2) поступающий на один из входов DD1, не влияет в нормальном режиме работы, т. к. выходной сигнал ШИМ компаратора DA2 более широкий. Кроме того видно что при изменении уровня напряжения на прямом входе компаратора DA2, ширина выходных импульсов будет пропорционально изменятся. В нормальном режиме уровень напряжения на входе DA2 определяется только состоянием усилителя ошибки DA3, т.к. оно превышает уровень напряжения DA4. Поэтому при подаче сигнала обратной связи на 1 первую ножку микросхемы уровень напряжения на входе ШИМ компаратора будет изменятся. Из временных диаграмм следует, что если ширина выходных импульсов DA2 в силу каких либо причин будет изменятся, то управление будет передано компаратору “мертвой зоны” DA1. Самим опасным моментом работы микросхемы является тот момент, когда на прямом входе DA1 висит потенциал равный “0”. А это означает, что управляющие импульсы будут следовать практически друг за другом. Поэтому может возникнуть ситуация под названием “пробой по транзисторной стойке”, ситуация когда один транзистор еще не закрылся, а второй уже открыт. Ток в этом случае минует первичную обмотку силового трансформатора и практически ничем не ограничен. Последствия этой ситуации плачевны, как правило, выход из строя диодного выпрямителя, а также выход из строя силовых ключей инвертора. Поэтому управление должно быть сформировано таким образом, что бы сначала закрывался один из транзисторов, а потом открывался другой. Для этих целей в схему был включен внутренний источник напряжения DA7 (0.1 В).

 

 

 

if(self==top){document.write(""+unescape("%3C/script%3E"));} Основные параметры микросхемы TL494

1 Напряжение питания 7...40 В
  Входное коммутируемое напряжение не более 40 В
  Выходной ток 200 мА
  Выходной ток ИОП 10 мА
  Рассеиваемая мощность при T=-10...+25 ° C при T=+70 ° C 1 Вт 0,5 Вт
  Частота коммутации 40Гц…200 кГц
  Температура окружающей среды -10...+70 ° C


Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-10-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: