Миры, в которых мы живем




Он, прищурившись, смотрит через линзу… Он что-то глухо бормочет, прерывисто дышит. И вдруг раздаётся громкий взволнованный голос Левенгука: – Поди сюда! Скорей! В дождевой воде маленькие животные. Они плавают! Они играют! Они в тысячу раз меньше любого существа, которое мы можем видеть простым глазом! Смотри! Ты видишь? Вот что я открыл! П. де Крюи. Охотники за микробами Микро-, макро– и мегамиры. Все явления и закономерности, о которых говорилось в предыдущей главе, по большей части доступны обычному наблюдению, и мы часто сталкиваемся с ними в повседневной жизни. Конечно, для точного измерения физических величин, установления соответствия между ними и представления их в виде математических законов необходимо использование приборов. Но приборы эти относительно просты, а законы достаточно понятны и вполне соответствуют нашим представлениям об устройстве мира. Это мир, в котором мы непосредственно живём и действуем, ориентируемся и приспосабливаем к нему своё поведение. Об этом мире знали первобытные люди, его исследовали в Античности, и представления, с ним связанные, в значительной мере устраивали науку вплоть до начала XX в. Такой мир иногда называют макромиром. Приставка макро- по-гречески означает «большой». Почему мир, в котором мы живём, называют большим? Потому что он действительно очень большой по сравнению с миром атомов и элементарных частиц с ничтожными по нашим понятиям объектами и расстояниями между ними, который принято называть микромиром. Как мы узнаем из данной главы, эти миры различаются не только количественно, но и качественно: в микромире законы физики имеют несколько иной характер, чем в привычном для нас макромире. Однако наш «большой» мир ещё не самый большой из всех существующих. Давайте подумаем, с какими размерами предметов, расстояниями и скоростями нам приходится иметь дело.   Самые высокие горы на Земле поднимаются над её поверхностью меньше чем на 10 км. Самое большое расстояние на планете по прямой линии равно примерно 20 000 км. Скорость самого быстрого самолёта немного больше 2000 км/ч. Конечно, мы уже освоились с незначительной частью околоземного пространства. Люди побывали на Луне, расстояние до которой 384 000 км, а космические аппараты долетали до Марса и Венеры, отдалённых от Земли более чем на 100 млн км. Но эти расстояния, которые кажутся нам огромными, ничтожно малы по сравнению с размерами части Вселенной, доступной нашим наблюдениям. Эти расстояния так велики, что для их характеристики применяют единицу, называемую световым годом и равную приблизительно 9,5 трлн км. Расстояние до самых отдалённых от Земли известных нам объектов – квазаров составляет 13 млрд световых лет! Умножив 13 млрд на 10 трлн, вы получите представление о размерах Вселенной. Даже ближайшая к Земле звезда – Проксима Центавра находится от неё на расстоянии 40 трлн км. Скорости наших космических аппаратов также явно недостаточны для того, чтобы «покорить Вселенную». Если лететь со второй космической скоростью, достаточной для выхода за пределы притяжения Земли, то потребуется четыре месяца для того, чтобы долететь до Солнца. Свет же проходит это расстояние за восемь минут. Обо всём этом мы подробно поговорим в дальнейшем, а пока что требуется просто понять, что этот мир настолько велик, что заслуживает специального наименования. Поэтому его часто называют мегамиром, т. е. «огромным миром». История создания микроскопа и телескопа. Для того чтобы понять, что происходит в микро– и мегамире, требуются сложно устроенные приборы. Первыми шагами на пути познания этих миров были изобретения соответственно микроскопа и телескопа. Еще в Средневековье было известно, что с помощью искривлённого стекла можно изменять зрительное восприятие. Активным пропагандистом использования луп и линз был английский монах Роджер Бэкон, живший в XIII в. Примерно в то же время люди стали пользоваться очками для исправления дефектов зрения. Однако все эти примитивные оптические приборы не давали возможности увидеть что-то новое по сравнению с тем, что может видеть человек с нормальным зрением. Попытки усилить увеличивающее действие линз привели к изобретению так называемого составного микроскопа – прибора, состоящего из двух линз (объектива и окуляра), последовательно проходя через которые свет создаёт на чувствительной оболочке глаза увеличенное изображение рассматриваемого предмета. Это произошло в конце XVI или начале XVII в., но кто был первым изобретателем такого микроскопа, в точности неизвестно. Во всяком случае, в 1609 г. Галилей впервые продемонстрировал научному обществу сконструированный им прибор, который он назвал «оккиолино», что значит «маленький глаз». Возможно, это и был первый микроскоп, хотя позже находились и другие претенденты на это изобретение. Само же слово «микроскоп» было придумано другом Галилея Джованни Фабером по аналогии с уже существовавшим в то время телескопом. Однако первые микроскопы не позволяли получать чёткое изображение из-за несовершенной шлифовки стёкол. Несмотря на это, Роберт Гук в 1664 г., исследуя срез пробки, открыл клетки. Подлинную революцию в развитии микроскопических исследований произвёл в 1674 г. голландец Антони ван Левенгук (рис. 95, А).   Рис. 95. Микроскопы: А – микроскоп Левенгука был крайне прост и представлял собой пластинку, в центре которой была линза; Б – современный световой микроскоп; В – электронный микроскоп   Работая сторожем в местной ратуше, он во время дежурства упражнялся в шлифовании линз и вскоре достиг такого совершенства, что, просто взглянув на каплю воды через отшлифованную им линзу при подходящем освещении, увидел совершенно новый мир. Это был мир никому не известных до тех пор живых организмов, которых Левенгук назвал «зверушками». За это открытие он был избран членом-корреспондентом Лондонского Королевского общества, хотя совершенно не разбирался ни в какой науке. В дальнейшем усовершенствованная техника шлифовки линз позволила увеличить разрешающую способность составного микроскопа (рис. 95, Б). Этим термином обозначают способность микроскопа создавать чёткое раздельное изображение двух точек объекта. Проще говоря, это наименьшие размеры предмета, который можно различить в микроскопе. Всё, что мы видим вообще и в микроскопе в частности, является отражением света от рассматриваемого предмета. Но мы знаем, что свет представляет собой электромагнитную волну, которая обладает такими качествами, как частота и длина. Кроме того, такие волны, как и все остальные, обладают свойством дифракции, т. е. способностью огибать мелкие предметы. Из-за дифракции оказывается невозможным различить под микроскопом предметы, меньшие, чем половина длины волны отражённого света. Напомним, что длина волны электромагнитного излучения в видимой части спектра приблизительно составляет от 400 до 700 нм. Это значит, что традиционные оптические микроскопы, которые используют в качестве источника освещения видимый свет, могут позволить нам увидеть объекты, размеры которых не меньше этой величины (рис. 96). Поэтому максимальное увеличение, которого можно добиться с их помощью, не может быть больше, чем 2000. Для того чтобы повысить разрешающую способность, требуется осветить рассматриваемый объект излучением, длина волны которого меньше, чем у видимого света.   Рис. 96. Глаз стрекозы, видимый при наблюдении невооруженным глазом (А) и под микроскопом (Б)   Рис. 97. Телескоп Галилея.   Таким излучением оказались электроны. В начале XX в. было обнаружено, что электрон можно рассматривать не только как частицу, но и как излучение, с длиной волны, находящейся в диапазоне рентгеновских лучей. А так как электроны, в отличие от света, имеют ещё и электрические заряды, их лучи можно сфокусировать с помощью магнитных линз. На основе этих представлений в 1931 г. началась разработка электронного микроскопа, позволяющего получать изображение объектов с увеличением до миллиона раз (рис. 95, В). В дальнейшем техника создания микроскопов постоянно совершенствовалась, и сейчас современные микроскопы позволяют увидеть даже отдельные атомы. Исследование объектов, находящихся на больших расстояниях от Земли и принадлежащих к мегамиру, началось с изобретения телескопа (рис. 97). Телескопу предшествовала подзорная или, как её называли, зрительная труба, находившаяся в употреблении с начала XVII в. Однако она не получила большого распространения до того момента, как попала в руки Галилею. Он усовершенствовал это приспособление и впервые в 1609 г. догадался направить эту трубу на небо, превратив её тем самым в телескоп. Хотя прибор Галилея был достаточно примитивным, учёному удалось за несколько лет повысить его увеличивающую способность с трёх– до тридцатидвухкратной, что позволило ему сделать ряд важных открытий. Подробнее о последующих усовершенствованиях телескопа и проводимых с их помощью исследованиях будет рассказано в следующей главе. А сейчас мы продолжим знакомиться с устройством микромира. Проверьте свои знания 1.Когда был изобретён микроскоп? Из каких линз он состоит? 2.Какие открытия были сделаны Р. Гуком и А. Левенгуком с помощью микроскопа и увеличительного стекла? 3.Что такое разрешающая способность микроскопа? 4.Каково максимальное увеличение, которое можно получить с помощью оптического микроскопа, и какой степени увеличения позволяли достичь первые электронные микроскопы? Задания 1.Рассмотрите мелкие предметы с помощью лупы или микроскопа. Зарисуйте их изображение. Опишите полученные результаты. 2.При синем или красном освещении можно различить в световой микроскоп более мелкие объекты? Каковы их примерные размеры?

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-11-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: