Технологический маршрут ремонта должен быть разработан так, чтобы все дефекты детали могли быть устранены с минимальными затратами времени и средств.
Маршрут ремонта детали
1. Обработка как «чисто» поверхности ø35 для устранения неравномерности износа.
. Обработка как «чисто» поверхности ø25±0,008 для устранения неравномерности износа.
. Наплавить поверхности ø35 на установке в среде защитных газов.
. Наплавить поверхности ø25±0,008 на установке в среде защитных газов.
. Точить поверхности ø35 в размер.
6. Точить поверхности ø25±0,008 в размер.
5. Разработка технологических операций ремонта поверхности ø35
На данном этапе решается комплекс задач, аналогичный задачам при изготовлении деталей. Он включает: выбор оборудования, выбор технологической оснастки и инструмента, расчёт параметров процесса, расчёт норм времени.
Выбор оборудования, станочных приспособлений.
Способ ремонта для дефекта поверхности ø35 наплавка в среде защитных газов (СО2). Выбираем установку для автоматизированной наплавки УД209 УХЛ-4. В качестве вспомогательного оборудования устанавливаем сварочный трансформатор ВДУ-504. Установка должна иметь приспособления: типовой трехкулачковый самоцентрирующийся патрон по ГОСТ 16886-71 и центр станочный по ГОСТ 8742-75. В стандартной комплектации УД-209 УХЛ-4 предусмотрено наличие универсальной наплавочной головки для подачи наплавочного электрода, флюса и защитного газа. В качестве газа должен быть использован СО2.
Расчет режимов наплавки.
Параметрами режима наплавки являются: сила тока I [А], напряжение на дуге U [В], скорость подачи электродной проволоки Vnp [м/ч], шаг наплавки S [мм], толщина наплавляемого слоя h [мм] и частота вращения детали (частота вращения шпинделя станка n) [мин-1].
Исходные данные: диаметр наплавляемой детали D=35 мм, диаметр электродной проволоки d, скорость наплавки Vн, износ детали с припуском на обработку Z.
Износ поверхности ø35 принят 0,006 мм/ст
Скорость подачи электродной проволокой в зону наплавки определяют по выражению:
, м/ч
Vн - скорость наплавки, м/ч;
h - толщина наплавленного слоя, мм;
S - шаг наплавки, мм/об;
Кз- коэффициент заполнения шва;
Кп - коэффициент перехода металла проволоки в шов.
Кз = от 0,9 до 0,95
Кп = от - 0,95 до 1,0
Требуемая толщина наплавляемого слоя
h=((Dн-Dф)/2)+Z=(35,012-35)/2+2=2,006 мм,
где Dн, Dф - номинальный и фактические диаметры наплавляемой детали, мм;
Z - припуск на механическую обработку, мм. Обычно Z от 1 до 2 мм, берем Z=2.
По табл. 5.1. (стр. 42, [3]) выбираем диаметр электродной проволоки марки Нп - 30ХГСА, d = 1,2 мм. Сила тока I = 95 А, напряжение на дуге U=20 В.
Скорость наплавки VH=35 м/ч, шаг наплавки S=3 мм/мин.
Тогда скорость подачи электродной проволоки Vnp составит:
Частота вращения шпинделя станка:
= (1000·Vн)/60π·D;
n= (1000·35)/60· π ·35= 5,31 об/мин
Для настройки наплавочной головки потребуются следующие параметры: смещение электрода с зенита а = 5 мм, вылет электрода b = 10 мм.
Оформим операционную карту наплавки.
Подготовка поверхности детали под наплавку.
Подготовка детали к ремонту наплавкой заключается в очистке её от масел, ржавчины и механической обработке (точить «как чисто»), для устранения неравномерностей износа. Очистка от масел и загрязнений осуществляется протиркой детали ветошью, промывкой в керосине или других моющих растворах.
С целью обеспечения равномерной и определенной толщины наплавляемого слоя поверхность подвергается обработке - механической.
Толщина снимаемого слоя выбирается таким образом, чтобы толщина наплавки после окончательной механической обработки оставалась не менее 0,5-1,0 мм.
Расчёт режимов механической обработки.
При выборе технологического оборудования учитываются габариты обрабатываемой заготовки, технологические маршруты обработки ее отдельных поверхностей, точность обработки, которая должна быть обеспечена на разрабатываемой операции, и другие факторы.
Технические характеристики металлорежущих станков приведены в ([2], стр. 5-65).
Выбираем универсальный токарно-винторезный станок 16К20.
В качестве станочного приспособления для крепления детали выбираем трехкулачковый патрон (ГОСТ 16886-71).
При механической обработке поверхностей деталей после наплавки применяют резцы и фрезы, оснащенные твердосплавными пластинами. Пластины изготовляются из металлокерамики и состоят из карбидных титано-вольфрамо-кобальтовых сплавов.
Размеры, геометрические и конструктивные элементы стандартных режущих инструментов приведены в ([2], стр.114-260).
Выбираем резцы токарные: проходной отогнутый Т5К6 ГОСТ 18879-73, резцы для проточки внутренних отверстий Т5К6 ГОСТ 18879-73 и канавочный специальный Т5К6.
Общие принципы выбора измерительных средств изложены в ([2], стр. 462]. Для единичного и мелкосерийного производства применяют универсальные измерительные средства. Выбираем микрометр МК ГОСТ 66507-89 и штангенциркуль ШЦ-II 0..200 ГОСТ 166-80.
Общие положения по назначению режимов резания и особенности их расчёта при точении, строгании, долблении, сверлении, фрезеровании и других видах обработки приведены в справочнике технолога-машиностроителя ([2], стр. 261-303).
Технологические переходы для МО поверхности ø35 :
. Черновое точение.
. Чистовое точение.
. Тонкое точение.
В соответствии с изложенными в справочнике рекомендациями, порядок расчёта режимов резания разобьём на несколько этапов ([2], стр. 265-275):
. Назначается глубина резания t по технологическим переходам:
черновое точение t = 0,9 мм;
чистовое точение t = 0,4 мм;
тонкое точение t = 0,26 мм.
. Назначается подача S и размер державки резца по технологическим переходам:
черновое точение S = 0,6 мм/об;
чистовое точение S = 0,4 мм/об;
тонкое точение S = 0,05 мм/об.
Размер державки резца 25´16 мм.
.Определяется скорость резания.
При этом среднее значение скорости резца Т рекомендуется принимать 30-60 м/мин. Поправочный коэффициент Кv, учитывающий влияние состояние поверхности заготовки на скорость резания при черновом точении рекомендуется взять равным 0,5, а для последующих технологических переходов Кv=0,7;
,
где: =60 м/мин.,
, x=0,15, y=0,45, m=0,20.
Черновое точение:
Чистовое точение:
Тонкое точение:
. Определяется частота вращения шпинделя станка n в об/мин.
Расчётная частота вращения шпинделя определяется по формуле:
,
где: V- скорость резания м/мин;
d - диаметр заготовки, мм.
Черновое точение:
об/мин.
Чистовое точение:
об/мин.
Тонкое точение:
об/мин.
По паспорту станка определяется ближайшая номинальная частота вращения n.
В соответствии с принятой частотой вращения n рассчитывается фактическая скорость резания:
В справочнике приведены число скоростей шпинделя К, наименьшая nmin и наибольшая nmax. Частоты вращения шпинделя, члены ряда частот вращения шпинделя определяются по формуле:
Знаменатель геометрической прогрессии j определяется по зависимости:
Округлим полученное значение до одного из чисел: 1,06; 1,12; 1,25; 1,41; 1,51; 1,78. Выбираем ближайшую меньшую.
;
.
Черновое точение:
.
Чистовое точение:
об/мин.
.
Тонкое точение:
об/мин.
.
. Определяется составляющая силы резания Рz, которая зависит от режимов резания и геометрических параметров режущей части инструмента. Главный угол в плане и радиус при вершине определяются в соответствии с выбранным инструментом.
,
где: , x = 1,0, y = 0,75, n = - 0,15, Kp=1,15.
Так как наибольшие силы резания обуславливаются наибольшей глубиной резания и подачей, то целесообразно провести расчёт только для чернового точения:
.
. Определяется мощность резания N:
;
7. По найденному значению мощности N проверяют выполнение условия:
, Nприв=N/η
где Nприв - мощность электродвигателя главного привода. η=0,7
Если условие не выполнено, то корректируются расчётные значения режимов резания (в первую очередь глубина резания).
Nприв=0,08/0,7=0,11кВт
,08<0,11.
6. Разработка технологических операций ремонта поверхности ø25±0,008
На данном этапе решается комплекс задач, аналогичный задачам при изготовлении деталей. Он включает: выбор оборудования, выбор технологической оснастки и инструмента, расчёт параметров процесса, расчёт норм времени.
Выбор оборудования, станочных приспособлений.
Способ ремонта для дефекта поверхности ø25±0,008 наплавка в среде защитных газов (СО2). Выбираем установку для автоматизированной наплавки УД209 УХЛ-4. В качестве вспомогательного оборудования устанавливаем сварочный трансформатор ВДУ-504. Установка должна иметь приспособления: типовой трехкулачковый самоцентрирующийся патрон по ГОСТ 16886-71 и центр станочный по ГОСТ 8742-75. В стандартной комплектации УД-209 УХЛ-4 предусмотрено наличие универсальной наплавочной головки для подачи наплавочного электрода, флюса и защитного газа. В качестве газа должен быть использован СО2.
Расчет режимов наплавки.
Параметрами режима наплавки являются: сила тока I [А], напряжение на дуге U [В], скорость подачи электродной проволоки Vnp [м/ч], шаг наплавки S [мм], толщина наплавляемого слоя h [мм] и частота вращения детали (частота вращения шпинделя станка n) [мин-1].
Исходные данные: диаметр наплавляемой детали D=25 мм, диаметр электродной проволоки d, скорость наплавки Vн, износ детали с припуском на обработку Z.
Износ поверхности ø25 принят 0,005 мм/ст
Скорость подачи электродной проволокой в зону наплавки определяют по выражению:
, м/ч
Vн - скорость наплавки, м/ч;
h - толщина наплавленного слоя, мм;
S - шаг наплавки, мм/об;
Кз- коэффициент заполнения шва;
Кп - коэффициент перехода металла проволоки в шов.
Кз = от 0,9 до 0,95
Кп = от - 0,95 до 1,0
Требуемая толщина наплавляемого слоя
h=((Dн-Dф)/2)+Z=(25-24,99)/2+2=2,005 мм,
где Dн, Dф - номинальный и фактические диаметры наплавляемой детали, мм;
Z - припуск на механическую обработку, мм. Обычно Z от 1 до 2 мм, берем Z=2.
По табл. 5.1. (стр. 42, [3]) выбираем диаметр электродной проволоки марки Нп - 30ХГСА, d = 1,2 мм. Сила тока I = 95 А, напряжение на дуге U=20 В.
Скорость наплавки VH=35 м/ч, шаг наплавки S=3 мм/мин.
Тогда скорость подачи электродной проволоки Vnp составит:
Частота вращения шпинделя станка:
= (1000·Vн)/60π·D;
n= (1000·35)/60· π ·25= 7,43 об/мин
дефектация ремонт деталь наплавка
Для настройки наплавочной головки потребуются следующие параметры: смещение электрода с зенита а = 5 мм, вылет электрода b = 10 мм.
Оформим операционную карту наплавки.
Подготовка поверхности детали под наплавку.
Подготовка детали к ремонту наплавкой заключается в очистке её от масел, ржавчины и механической обработке (точить «как чисто»), для устранения неравномерностей износа. Очистка от масел и загрязнений осуществляется протиркой детали ветошью, промывкой в керосине или других моющих растворах.
С целью обеспечения равномерной и определенной толщины наплавляемого слоя поверхность подвергается обработке - механической.
Толщина снимаемого слоя выбирается таким образом, чтобы толщина наплавки после окончательной механической обработки оставалась не менее 0,5-1,0 мм.
Расчёт режимов механической обработки.
При выборе технологического оборудования учитываются габариты обрабатываемой заготовки, технологические маршруты обработки ее отдельных поверхностей, точность обработки, которая должна быть обеспечена на разрабатываемой операции, и другие факторы.
Технические характеристики металлорежущих станков приведены в ([2], стр. 5-65).
Выбираем универсальный токарно-винторезный станок 16К20.
В качестве станочного приспособления для крепления детали выбираем трехкулачковый патрон (ГОСТ 16886-71).
При механической обработке поверхностей деталей после наплавки применяют резцы и фрезы, оснащенные твердосплавными пластинами. Пластины изготовляются из металлокерамики и состоят из карбидных титано-вольфрамо-кобальтовых сплавов.
Размеры, геометрические и конструктивные элементы стандартных режущих инструментов приведены в ([2], стр.114-260).
Выбираем резцы токарные: проходной отогнутый Т5К6 ГОСТ 18879-73, резцы для проточки внутренних отверстий Т5К6 ГОСТ 18879-73 и канавочный специальный Т5К6.
Общие принципы выбора измерительных средств изложены в ([2], стр. 462]. Для единичного и мелкосерийного производства применяют универсальные измерительные средства. Выбираем микрометр МК ГОСТ 66507-89 и штангенциркуль ШЦ-II 0..200 ГОСТ 166-80.
Общие положения по назначению режимов резания и особенности их расчёта при точении, строгании, долблении, сверлении, фрезеровании и других видах обработки приведены в справочнике технолога-машиностроителя ([2], стр. 261-303).
Технологические переходы для МО поверхности ø25±0,008:
1. Черновое точение.
. Чистовое точение.
. Тонкое точение.
В соответствии с изложенными в справочнике рекомендациями, порядок расчёта режимов резания разобьём на несколько этапов ([2], стр. 265-275):
. Назначается глубина резания t по технологическим переходам:
черновое точение t = 0,9 мм;
чистовое точение t = 0,4 мм;
тонкое точение t = 0,26 мм.
. Назначается подача S и размер державки резца по технологическим переходам:
черновое точение S = 0,6 мм/об;
чистовое точение S = 0,4 мм/об;
тонкое точение S = 0,05 мм/об.
Размер державки резца 25´16 мм.
.Определяется скорость резания.
При этом среднее значение скорости резца Т рекомендуется принимать 30-60 м/мин. Поправочный коэффициент Кv, учитывающий влияние состояние поверхности заготовки на скорость резания при черновом точении рекомендуется взять равным 0,5, а для последующих технологических переходов Кv=0,7;
,
где: =60 м/мин.,
, x=0,15, y=0,45, m=0,20.
Черновое точение:
Чистовое точение:
Тонкое точение:
. Определяется частота вращения шпинделя станка n в об/мин.
Расчётная частота вращения шпинделя определяется по формуле:
,
где: V- скорость резания м/мин;
d - диаметр заготовки, мм.
Черновое точение:
об/мин.
Чистовое точение:
об/мин.
Тонкое точение:
об/мин.
По паспорту станка определяется ближайшая номинальная частота вращения n.
В соответствии с принятой частотой вращения n рассчитывается фактическая скорость резания:
В справочнике приведены число скоростей шпинделя К, наименьшая nmin и наибольшая nmax. Частоты вращения шпинделя, члены ряда частот вращения шпинделя определяются по формуле:
Знаменатель геометрической прогрессии j определяется по зависимости:
Округлим полученное значение до одного из чисел: 1,06; 1,12; 1,25; 1,41; 1,51; 1,78. Выбираем ближайшую меньшую.
;
.
Черновое точение:
.
Чистовое точение:
об/мин.
.
Тонкое точение:
об/мин.
.
. Определяется составляющая силы резания Рz, которая зависит от режимов резания и геометрических параметров режущей части инструмента. Главный угол в плане и радиус при вершине определяются в соответствии с выбранным инструментом.
,
где: , x = 1,0, y = 0,75, n = - 0,15, Kp=1,15.
Так как наибольшие силы резания обуславливаются наибольшей глубиной резания и подачей, то целесообразно провести расчёт только для чернового точения:
.
. Определяется мощность резания N:
;
. По найденному значению мощности N проверяют выполнение условия:
, Nприв=N/η
где Nприв - мощность электродвигателя главного привода. η=0,7
Если условие не выполнено, то корректируются расчётные значения режимов резания (в первую очередь глубина резания).
Nприв=0,07/0,7=0,1кВт
,07<0,1.
Заключение
В ходе выполнения курсовой работы были разработаны технологические документы и выполнен ремонтный чертеж детали.
Кроме того, мы рассмотрели целесообразность возможности ремонта данной детали, рассчитали необходимые режимы технологических операций, а также разработали технологию восстановления детали: вал заднего хода.
В ходе разработки данного проекта мы выяснили, что технологический процесс восстановления данного детали достаточно трудоемок и требует существенных затрат.
Список использованной литературы
1. Эксплуатация и ремонт полиграфических машин, методические указания по выполнению курсовой работы; Разработка технологического процесса ремонта детали полиграфической машины; 150407.65 «Полиграфические машины и автоматизированные комплексы», Москва 2007
. Эксплуатация и ремонт полиграфических машин. Учебное пособие. Токмаков Б.В. М.: МГУП,2002.
3. Справочник технолога - машиностроения, М, Машиностроения, 1973г, 1986г.
. Справочник технолога-машиностроителя. Под ред. Косиловой А.Г., Мещерякова Р.Н. в 2-х томах. -М.: Машиностроение, 1989.
. Общемашиностроительные нормативы времени на слесарные работы по ремонту оборудования. - М.: Экономика, 1989.
. Допуски и посадки: Справочник в 2-х томах / под ред. Мягкова В.Д. - Л.: Машиностроение, 1982,1983.
. Токмаков Б.В. Эксплуатация и ремонт полиграфических машин. Лабораторные работы в 2-х частях.- М.:МГУП, 2007.
. Восстановление деталей машин: Справочник / под ред. Молодык Н.В., Зенкина А.С. -М.: Машиностроение, 1989.