Трёхточечные схемы автогенераторов.




Электронные генераторы

 

Генераторами называются электронные устройства, преобразующие энергию источника постоянного тока в энергию переменного тока (электромагнитных колебаний) различной формы требуемой частоты и мощности.

 

Классификация электронных генераторов:

 

1) по форме выходных сигналов:

- синусоидальных сигналов;

- сигналов прямоугольной формы (мультивибраторы);

- сигналов линейно изменяющегося напряжения (ГЛИН) или их еще называют генераторами пилообразного напряжения;

- сигналов специальной формы.

 

2) по частоте генерируемых колебаний (условно):

- низкой частоты (до 100 кГц);

- высокой частоты (свыше 100 кГц).

 

3) по способу возбуждения:

- с независимым (внешним) возбуждением;

- с самовозбуждением (автогенераторы).

 

Суть генерации колебаний. Из физики известно, что если к цепи, состоящей из параллельно соединенных конденсатора и катушки индуктивности, кратковременно подключить источник постоянного тока, то будет происходить следующий процесс. Конденсатор зарядится до некоторого значения и после этого начнет разряжаться через катушку. Катушка в этот момент, по сути, будет накапливать энергию.

После того, как конденсатор разрядится (а катушка, соответственно, накопит энергию), процесс пойдет в обратном порядке, т.е. накопленная в катушке энергия будет заряжать конденсатор и т.д. Другими словами, в этой цепи, которая называется параллельный колебательный контур, будут происходить колебания. В идеальном контуре эти колебания будут незатухающими, т.е. во времени будут продолжаться бесконечно. Но поскольку катушка имеет некое конечное сопротивление, да и конденсатор не подарок, в контуре будут потери энергии, и колебания, соответственно, будут постепенно затухать по экспоненте.

 

Что бы колебания были незатухающими в контур надо добавлять потерянную энергию.

Рис. структура автогенератора.

 

Здесь мы видим треугольник и прямоугольник. УЭ – это усилительный элемент с коэффициентом передачи К, а ПОС – это положительная обратная связь с коэффициентом передачи β. Колебания в этой системе возникнут только при соблюдении двух условий:

Условие баланса амплитуд: βK≥1

Условие баланса фаз: φ1 + φ2 = 2πn, где n – 0, ±1, ±2,…

И ещё раз, генерация колебаний происходит при выполнении двух условий: условия баланса фаз и условия баланса амплитуд.

 

Схемы электронных генераторов строятся по тем же схемам, что и усилители, только у генераторов нет источника входного сигнала, его заменяет сигнал положительной обратной связи (ПОС). Напоминаем, что обратная связь - это передача части выходного сигнала во входную цепь. Необходимая форма сигнала обеспечивается структурой цепи обратной связи. Для задания частоты колебаний цепи ОС строятся на LC или RC-цепях (частоту определяет время перезаряда конденсатора).

 

Сигнал, сформированный в цепи ПОС, поступает на вход усилителя, усиливается в К раз и поступает на выход. При этом часть сигнала с выхода возвращается на вход через цепь ПОС, где ослабляется в К раз, что позволят поддерживать постоянную амплитуду выходного сигнала генератора.

Генераторы с независимым внешним возбуждением (избирательные усилители) являются усилителями мощности с соответствующим частным диапазоном, на вход которых подаётся электрический сигнал от автогенератора. Т.е. происходит усиление только определенной полосы частот.

Наиболее простым RC-генератором является так называемая схема с трехфазной фазирующей цепочкой, которая ещё называется схемой с реактивными элементами одного знака.

Трёхточечные схемы автогенераторов.

Основными типами LC -генераторов являются генератор Хартли и генератор Колпица.

Индуктивная трехточечная схема Хартли показана на рис.

 

 

Элементы R1, R2, R3C3, как и в предыдущей схеме, обеспечивают режим работы по постоянному току транзистора VT, в коллекторную цепь которого включен колебательный контур L'L «C2. Выходной сигнал снимается с коллектора транзистора VT (или с L»), сигнал ПОС – с катушки L'. Поскольку напряжения этих сигналов противофазны, то автоматически выполняется условие баланса фаз. Сигнал ПОС подается на базу транзистора через разделительный конденсатор, сопротивление которого на частоте генерации мало. Этот конденсатор предотвращает попадание постоянной составляющей в базовую цепь (через катушку). Общая точка L' и L'' подключена к источнику питания, сопротивление которого переменному току незначительно. Условие баланса амплитуд выполняют подбором числа витков L'L''.

Частота генерации определяется по формуле:

 

Трехточечные схемы называются трехточечными, поскольку, если внимательно посмотреть на схему, контур подключается к трем выводам транзистора (или другого усилительного прибора). Первая точка – это коллектор транзистора – нижний (по схеме) вывод контура, вторая – база – верхний вывод контура через конденсатор С1 и третья точка подключена к эмиттеру через источник питания, а точнее средний вывод контура через конденсатор С5, общий провод, цепь R3C3 подключен к эмиттеру.

 

Емкостная трехточечная схема Колпица.

 

В этой схеме, аналогично предыдущей, режим по постоянному току определяют элементы R1, R2, R3, R4C2. В коллекторную цепь транзистора включен контур L1C3C4. Сигнал ПОС снимается с конденсатора С4 и через конденсатор С1 поступает в базовую цепь. С1 не пропускает высокое коллекторное напряжение на базу транзистора. Общую точку конденсаторов С3, С4 можно считать подключенной к источнику питания, поскольку его сопротивление переменному току незначительно.

Частота генерации определяется по формуле:

Генератор Колпица более стабилен, чем генератор Хартли, и более часто используется.

Стабилизация частоты:

 

Очень важным требованием, предъявляемым к генераторам, является стабильность частоты генерируемых колебаний. Нестабильность частоты зависит от многих факторов, а именно:

- изменение окружающей температуры;

- изменение напряжения источника питания;

- механическая вибрация и деформация деталей;

- шумы активных элементов.

 

Нестабильность частоты оценивается коэффициентом относительной нестабильности:

 

Существует два способа стабилизации частоты:

1. Параметрический способ стабилизации.

2. Кварцевый способ стабилизации.

 

При первом способе используется изготовление деталей из материалов, мало изменяющих свои свойства при изменении температуры и других факторов. Используется экранирование и герметизация контуров, высокая стабильность источника питания, рациональность монтажа и прочее. Однако этим методом нельзя обеспечить высокую стабильность частоты. Относительный коэффициент нестабильности частоты колеблется в пределах 10-4 – 10-5.

Значительно большей стабильности можно достичь, если применить способ кварцевой стабилизации, основанный на применении кварцевого резонатора.

 

Кварц — это материал, который может преобразовывать механическую энергию в электрическую, когда к нему прикладывают давление, и электрическую энергию в механическую, когда к нему прикладывают напряжение. Когда к кристаллу кварца приложено переменное напряжение, кристалл начинает растягиваться и сжиматься, создавая механические колебания, частота которых соответствует частоте переменного напряжения.

Каждый кристалл кварца обладает собственной частотой колебаний, обусловленной его структурой и размерами. Если частота приложенного переменного напряжения совпадает с собственной частотой, колебания кристалла ярко выражены. Если частота приложенного переменного напряжения отличается от собственной частоты кварца, кристалл колеблется слабо. Собственная частота механических колебаний кристалла кварца практически не зависит от температуры, что делает его идеальным для использования в генераторах. В тех случаях, когда необходимо обеспечить очень высокую стабильность частоты колебаний, применяют термостатирование генератора (кварцевый резонатор помещают в термостат).

Для изготовления кварцевого резонатора на кристаллическую пластинку кварца наносятся металлические электроды, к которым прижимаются пружины для обеспечения электрического контакта. После этого кристалл помещается в металлический корпус.

 

 

Рис. Эквивалентная схема Рис. Зависимость реактивного

кварцевого сопротивления от частоты.

 

 

Особо не вдаваясь в подробности теории цепей, из рисунка видно, что кварц может быть эквивалентом как последовательного колебательного контура, так и параллельного.

На частоте f01 происходит резонанс напряжений. Эта частота определяется по формуле:

На частоте f02 происходит резонанс токов, и эта частота определяется по формуле:

 

 

Таким образом, кварцевый резонатор можно включать вместо конденсатора, либо вместо катушки в контуре. При использовании кварцевого способа стабилизации коэффициент относительной нестабильности достигает 10-7 – 10-10.

Рис. Схемы кварцевых генераторов: а — Хартли; б — Колпитца

 

На рис., (а) изображена схема кварцевого генератора Хартли с параллельной обратной связью. Кварц включен последовательно в цепь обратной связи.

Если частота колебательного контура отклоняется от частоты кварца, импеданс кварца увеличивается, уменьшая величину обратной связи с колебательным контуром.

Это позволяет колебательному контуру вернуться на частоту кварца.

На рис., (б) изображен генератор Колпица с кварцем, включенным так же, как и в генераторе Хартли.

Кварц управляет обратной связью с колебательным контуром.

RC-автогенераторы

 

В предыдущей главе рассматривались LС-автогенераторы. Они применяются на высоких частотах. Если же необходимо генерировать низкие частоты, применение LС-генераторов становится затруднительным. Поскольку формула для определения частоты генерирования колебаний выглядит вот так:

 

то нетрудно заметить, что для уменьшения частоты необходимо увеличивать емкость и индуктивность контура. А увеличение емкости и индуктивности напрямую влечёт увеличение габаритных размеров. Другими словами, размеры контура при этом будут гигантскими. А со стабилизацией частоты дело будет обстоять ещё хуже.

 

Поэтому разработали RC-автогенераторы.

 

Наиболее простым RC-генератором является так называемая схема с трехфазной фазирующей цепочкой, которая ещё называется схемой с реактивными элементами одного знака.

 

RC-автогенератор с фазовращающей цепочкой

Из схемы видно, что это всего-навсего усилитель, между выходом и входом которого включена цепь, которая переворачивает фазу сигнала на 1800. Эта цепь называется фазовращающей. Фазовращающая цепочка состоит из элементов С1R1, C2R2, C3R3. С помощью одной цепочки из резистора и конденсатора можно получить сдвиг фаз не более чем на 900. Реально же сдвиг получается близким к 600. Поэтому для получения сдвига фазы на 1800 приходится ставить три цепочки. С выхода последней RC-цепи сигнал подается на базу транзистора.

Работа начинается в момент включения источника питания. Возникающий при этом импульс коллекторного тока содержит широкий и непрерывный спектр частот, в котором обязательно будет и необходимая частота генерации. При этом колебания частоты, на которую настроена фазовращающая цепь, станут незатухающими. Для колебаний остальных частот условия самовозбуждения выполнятся, не будут и они, соответственно, быстро затухают. Частота колебаний определяется по формуле

 

При этом должно соблюдаться условие:

 

R1=R2=R3=R; C1=C2=C3=C

 

Такие генераторы способны работать только на фиксированной частоте.

 

Помимо рассмотренного генератора с использованием фазовращающей цепи имеется ещё интересный, наиболее употребительный, вариант.

Пассивный полосовой RC-фильтр с частотно-независимым делителем.

Так вот, эта самая конструкция представляет собой так называемый мост Вина-Робинсона, хотя наиболее часто встречается название просто мост Вина.

 

 

Левая часть этой конструкции представляет собой пассивный полосовой RC-фильтр, в точке А снимается выходное напряжение. Правая часть есть ни что иное, как частотно-независимый делитель. Принято считать, что R1=R2=R, C1=C2=C. Тогда резонансная частота будет определяться следующим выражением:

При этом модуль коэффициента усиления максимален и равен 1/3, а фазовый сдвиг нулевой. Если коэффициент передачи делителя равен коэффициенту передачи полосового фильтра, то на резонансной частоте напряжение между точками А и В будет равно нулю, а ФЧХ на резонансной частоте делает скачок от -90є до +90є. Вообще же должно выполнятся условие: R3=2R4

Конечно, все как обычно рассматривается в идеальном или приближенном к идеальному случаях. Ну а реально дело, как всегда, обстоит немного хуже. Поскольку каждый реальный элемент моста Вина имеет некоторый разброс параметров, даже незначительное несоблюдение условия R3=2R4 приведет либо к нарастанию амплитуды колебаний вплоть до насыщения усилителя, либо к затуханию колебаний или полной их невозможности.

 

На рисунке приведена схема синусоидального генератора. Необходимый коэффициент усиления задаётся с помощью цепи ООС на резисторах R1, R2.Для обеспечения сдвига по фазе равного 0, цепь ПОС подключена между выходом ОУ и его не инвертирующим входом. При этом цепь ПОС представляет собой полосовой фильтр. Частота резонанса f0 определяется по формуле: f0 = 1/(2πRC).

 

Импульсные генераторы

Схемы блокинг-генераторов

 

 

Мультивибратор представляет собой генератор несинусоидальных колебаний, близких по форме к прямоугольным. Такие колебания можно рассматривать как сумму большого числа простых гармонических колебаний (рис.). Отсюда и название «мультивибратор», или буквально «генератор множества простых колебаний».

Мультивибратор в подавляющем большинстве случаев выполняет функцию задающего генератора, формирующего запускающие входные импульсы для последующих узлов и блоков в системе импульсного или цифрового действия.

Графики напряжений на коллекторах симметричного мультивибратора

Схема симметричного транзисторного мультивибратора

На рисунке приведена схема симметричного мультивибратора на ОУ. Симметричный – время импульса прямоугольного импульса равно времени паузы tимп = tпаузы.

ОУ охвачен положительной обратной связью – цепь R1,R2, действующей одинаково на всех частотах. Напряжение на неивертирующем входе постоянно и зависит от сопротивления резисторов R1,R2. Входное напряжение мультивибратора формируется при помощи ООС через цепочку RC.

Уровень напряжения на выходе изменяется с +Uнас на -Uнас и обратно.

Если напряжение выхода Uвых = +Uнас конденсатор заряжается и напряжение Uс, действующее на инвертирующем входе возрастает по экспоненциальному закону.

При равенстве Uн = Uс произойдёт скачкообразное изменение выходного напряжения Uвых = -Uнас, что вызовет перезаряд конденсатора. При достижении равенства -Uн = -Uс снова произойдёт изменение состояние Uвых. Процесс повторяется.

Изменение постоянной времени RC-цепи приводит к изменению времени заряда и разряда конденсатора, а значит и частоты колебаний мультивибратора. Кроме того, частота зависит от параметров ПОС и определяется по формуле: f = 1/T = 1/2tи = 1/[2 ln(1+2 R1/R2)]

При необходимости получить несимметричные прямоугольные колебания для tи ≠ tп, используют несимметричные мультивибраторы, в которых перезаряд конденсатора происходит по разным цепочкам с различными постоянными времени.

 

Одновибраторы (ждущие мультивибраторы) предназначены для формирования прямоугольного импульса напряжения требуемой длительности при воздействии на входе короткого запускающего импульса. Одновибраторы часто называют еще электронными реле выдержки времени.

Работа ждущего мультивибратора основана на зарядно-разрядном процессе одного единственного конденсатора, образующего совместно с резисторами RC-цепочки. Как и различные другие схемы генераторов, ждущий мультивибратор имеет два выхода – коллекторы транзисторов



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: