Атомно-силовой микроскоп




Вакуумный пост

Вакуумный пост, с остаточным вакуумом не хуже 5*10-5мбар, предназначен для широкого спектра задач, связанных с обработкой поверхности, в том числе плазменного травления и нанесения покрытий, с преподготовкой и обработкой образцов в вакууме – их обезгаживание, модификация, в том числе с использованием инертных газов (аргон, неон и др.)

 

Вакуумный пост предназначен для подготовки образцов электронной микроскопии. Он состоит из камеры испарения, автоматической вакуумной системы и системы электропитания. Он может быть использован для подготовки различных образцов, пригодных для анализа и наблюдения с высоким разрешением в просвечивающих и растровых электронных микроскопах.

Области применения: углеродное напыление, изготовление тонких металлических фольг напылением, оттенение реплик, напыление проводящих покрытий на непроводящие образцы, также может использоваться для очистки апертурных диафрагм электронных микроскопов и в различных экспериментах, например, для прокаливания в вакууме.

 

 

Тонкие плёнки

Тонкие плёнки могут быть твёрдыми или жидкими (реже — газообразными). Состав, структура и свойства тонких плёнок могут отличаться от таковых для объемной фазы, из которой образовалась тонкая плёнка. К твёрдым тонким пленкам относятся оксидные плёнки на поверхности металлов и искусственные плёночные покрытия, формируемые на различных материалах с целью создания приборов микроэлектроники, предотвращения коррозии, улучшения внешнего вида и т. п.

Жидкие тонкие плёнки разделяют газообразную дисперсную фазу в пенах и жидкие фазы в эмульсиях; образование устойчивых пен и эмульсий возможно только при наличии ПАВ в составе пленок. Жидкие тонкие плёнки могут возникать самопроизвольно между зернами в поликристаллических твёрдых телах, если поверхностная энергия границы зерна превышает поверхностное натяжение на границе твёрдой и жидкой фаз более, чем вдвое (условие Гиббса–Смита). Газообразные тонкие плёнки с заметным временем жизни могут возникнуть между каплей и объемной жидкостью в условиях испарения.

Определение толщины тонких пленок часто проводят методами, основанными на измерении интенсивности отражённого света, например, при помощи эллипсометрии; используют также электрические методы, основанные на определении ёмкости и проводимости тонких плёнок. Для изучения твердых тонких плёнок применяют электронную микроскопию, рентгеновскую спектроскопию и другие методы, разработанные для исследования поверхности твердых тел. Получение тонких пленок и тонкопленочных покрытий лежит в основе ряда современных областей техники, прежде всего микроэлектроники.

Оказалось, что объекты, имеющие столь малые размеры, кардинально меняют свои свойства. Например, у столь малых объектов меняется температура плавления, степень переохлаждения и межплоскостное расстояние по сравнению с массивными объектами.

С тонкими плёнками связаны такие явления, как технологии получения высокого вакуума, процессы и различные механизмы формирования пленок, многокомпонентные системы, технологические аспекты напыления, методы исследований, получения подложек и др. Исследование данных объектов имеет решающее значение для совершенствования микроэлектронных устройств и для науки в целом.

Нитевидные кристаллы

Нитевидные кристаллы, монокристаллы в виде игл или волокон. Размеры нитевидные кристаллы в одном направлении во много раз больше, чем в остальных: типичная длина от 0,5 мм до нескольких мм, диаметр 0,5-50 мкм. Форма поперечного сечения нитевидного кристалла зависит от типа кристаллической ячейки данного соединения и может быть треугольной, квадратной, шестиугольной и др. Иногда нитевидные кристаллы имеют вид тонких трубок, лент, пластинок в виде спирально свернутого "рулета". Наиболее изучены нитевидные кристаллы кремния, углерода (графит), металлов. оксидов Аl и Zr, карбидов Si, В, Hf и W, нитридов Аl и В.

Первые упоминания об искусственном получении нитевидных кристаллов относятся к 16 в. Особенный интерес к Н. к. возник в 50-х гг. 20 в. — после того как было обнаружено, что Н. к. многих веществ обладают необычно высокими механическими свойствами. В последующие годы в лабораториях ряда стран получены более 140 различных элементов и соединений. Н. к. некоторых тугоплавких соединений (карбида кремния, окиси алюминия, нитрида кремния и др.) выпускаются в промышленных масштабах.

Наиболее важное свойство нитевидного кристалла — уникально высокая прочность (близкая к теоретической, которую можно оценить из значений модуля упругости материала), в несколько раз превосходящая прочность массивных моно- и поликристаллов. Высокая прочность Н. к. объясняется совершенством их структуры и значительно меньшим, чем у массивных кристаллов, количеством (а иногда полным отсутствием) объёмных и поверхностных дефектов.

Н. к. тугоплавких соединений, помимо высокой температуры плавления и прочности, имеют высокий модуль упругости, химически инертны по отношению ко многим металлическим, полимерным и керамическим материалам до весьма высоких температур. Наиболее важные направления в применении Н. к. — реализация их высоких прочностных свойств в композиционных материалах, а также использование их высокой тепловой и абразивной стойкости.

 

 

Атомно-силовой микроскоп

Атомно-силовой микроскоп был изобретен Биннигом, Квоутом и Гербером (в 1986 году. В отличие от сканирующей туннельной микроскопии, АСМ позволяет исследовать как проводящие, так и непроводящие поверхности. Пространственное разрешение атомно-силового микроскопа зависит от размера кантилевера и кривизны его острия. Разрешение достигает атомарного уровня по горизонтали и существенно превышает его по вертикали.

Атомно-силовая микроскопия[1] — один из видов сканирующей зондовой микроскопии, основанный на ван-дер-ваальсовских взаимодействиях зонда с поверхностью образца. Принцип действия атомного силового микроскопа (АСМ) основан на использовании сил атомных связей, действующих между атомами вещества. На малых расстояниях между двумя атомами действуют силы отталкивания, а на больших – силы притяжения. Совершенно аналогичные силы действуют и между любыми сближающимися телами. В сканирующем атомном силовом микроскопе такими телами служат исследуемая поверхность и скользящее над нею острие. Обычно в приборе в качестве зонда используется игла с площадью острия в один или несколько атомов, закрепленная на кантилевере, который плавно скользит над поверхностью образца. На выступающем конце кантилевера (над шипом) расположена зеркальная площадка, на которую падает и от которой отражается луч лазера. Когда зонд опускается и поднимается на неровностях поверхности, отраженный луч отклоняется, и это отклонение регистрируется фотодетектором, а сила, с которой шип притягивается к близлежащим атомам – пьезодатчиком. Данные фотодетектора и пьезодатчика используются в системе обратной связи, которая может обеспечивать, например, постоянную величину силу взаимодействия между микрозондом и поверхностью образца. В результате, можно строить объёмный рельеф поверхности образца в режиме реального времени. Разрешающая способность данного метода составляет примерно 0,1-1 нм по горизонтали и 0,01 нм по вертикали.

В зависимости от расстояний от иглы до образца возможны следующие режимы работы атомно-силового микроскопа:

1)контактный режим;

2)бесконтактный режим;

3) полуконтактный режим

При контактном режиме расстояние от иглы до образца составляет порядка нескольких десятых нм. Таким образом, игла находится в мягком физическом контакте с образцом и подвержена действию сил отталкивания. В этом случае взаимодействие между иглой и образцом заставляет кантилевер изгибаться, повторяя топографию поверхности. Топографические изображения в атомно-силовом микроскопе обычно получают в одном из двух режимов:

А)Режим постоянной высоты

Б)Режим постоянной силы.

 

При бесконтактном режиме (режиме притяжения) кантилевер с помощью пьезокристалла колеблется над изучаемой поверхностью с амплитудой ~2 нм, превышающей расстояние между зондом и поверхностью. По изменению амплитуды или сдвигу резонансной частоты колебаний в ходе сканирования поверхности определяется сила притяжения и формируется изображение поверхности.

Полуконтактный режим аналогичен бесконтактному режиму с тем отличием, что игла кантилевера в нижней точке своих колебаний слегка касается поверхности образца. При использовании атомно-силовой микроскопии в нанолитографии работа ведется в контактном режиме с контролируемым перемещением острия зонда по заданной схеме. При использовании специальных кантилеверов можно также изучать электрические и магнитные свойства поверхности.

 

 

[1]

 

Электронный микроскоп

Электронный микроскоп (ЭМ)[2] — прибор, позволяющий получать изображение объектов с максимальным увеличением до 106 раз, благодаря использованию, в отличие от оптического микроскопа, вместо светового потока пучка электронов с энергиями 200 В ÷ 400 кэВ и более. Разрешающая способность электронного микроскопа в 1 000÷10 000 раз превосходит разрешение традиционного светового микроскопа и для лучших современных приборов может быть меньше одного ангстрема. Для получения изображения в электронном микроскопе используются специальные магнитные линзы, управляющие движением электронов в колонне прибора при помощи магнитного поля.

В его электронно-оптич. системе (колонне) с помощью вакуумной системы создаётся глубокий вакуум (давление до ~10-5 Па). Пучок электронов, источником к-рых служит термокатод, формируется в электронной пушке и высоковольтном ускорителе и затем дважды фокусируется первым и вторым конденсорами, создающими на объекте электронное "пятно" малых размеров (при регулировке диаметр пятна может меняться от 1 до 20 мкм). После прохождения сквозь объект часть электронов рассеивается и задерживается апертурной диафрагмой. Нерассеянные электроны проходят через отверстие диафрагмы и фокусируются объективом в предметной плоскости промежуточной электронной линзы. Здесь формируется первое увеличенное изображение. Последующие линзы создают второе, третье и т. д. изображения. Последняя - проекционная - линза формирует изображение на катодолюминесцентном экране, который светится под воздействием электронов. Степень и характер рассеяния электронов неодинаковы в различных точках объекта, т. к. толщина, плотность, структура и хим. состав объекта меняются от точки к точке. Соответственно изменяется число электронов, прошедших через апертурную диафрагму, а следовательно, и плотность тока на изображении. Возникает амплитудный контраст, к-рый преобразуется в световой контраст на экране. В случае тонких объектов превалирует фазовый контраст, вызываемый изменением фаз волн де Бройля, рассеянных в объекте и интерферирующих в плоскости изображения. Под экраном Э. м. расположен магазин с фотопластинками, при фотографировании экран убирается и электроны воздействуют на фотоэмульсионный слой. Изображение фокусируется объективной линзой с помощью плавной регулировки тока, изменяющей её магнитное поле. Токами др. электронных линз регулируется увеличение Э. м., которое равно произведению увеличений всех линз. При больших увеличениях яркость свечения экрана становится недостаточной и изображение наблюдают с помощью усилителя яркости. Для анализа изображения производятся аналогово-цифровое преобразование содержащейся в нём информации и обработка на компьютере. Усиленное и обработанное по заданной программе изображение выводится на экран компьютера и при необходимости вводится в запоминающее устройство.

[2]Электронный микроскоп просвечивающего типа (ПЭМ): 1 -электронная пушка с ускорителем; 2-конден сорные линзы; 3- объективная линза; 4 - проекционные линзы; 5 -световой микроскоп, дополнительно увели чивающий изображение, наблюдаемое на экране; б- ту бус со смотровыми окнами, через которые можно наблю дать изображение; 7 -высоковольтный кабель; 8- вакуумная система; 9- пульт управления; 10- стенд; 11 - высоковольтное питающее устройство; 12- источник питания линз.

 

 

Рентгенография

Метод рентгенологического исследования, при котором получают фиксированное изображение исследуемого объекта (рентгенограмму). Наряду с рентгеноскопией является основным методом рентгенологического исследования. Преимущество рентгенографии заключается в более высоком качестве и детализации изображения, а также в возможности наблюдать по рентгенограммам за динамикой процесса. С помощью рентгенографии могут быть изучены практически все области тела человека. В одних случаях это происходит за счет естественной контрастности ряда органов и структур, вследствие чего можно получить рентгенограммы костей и суставов, сердца, легких, диафрагмы; в других случаях рентгенографии выполняют в условиях искусственного контрастирования, например при урографии, ангиографии.

Показания и противопоказания те же, что и при других методах рентгенологического исследования. Специальных мер подготовки обычно не требуется. Рентгенографию выполняют с помощью рентгеновских аппаратов: стационарных, устанавливаемых в специально оборудованных рентгеновских кабинетах, и передвижных или переносных, используемых в палатах реанимации, интенсивной терапии, у постели больного.

Изображение может быть получено путем прямого воздействия рентгеновского излучения, прошедшего через исследуемый объект, на фотопленку, которую затем проявляют и фиксируют. Для уменьшения лучевой нагрузки на больного, а также с целью получения более качественного изображения рентгеновское излучение преобразуют в световое, для чего используют два люминесцентных усиливающих экрана, между которыми помещают кассету с фотопленкой. Так называемую ксерорентгенографию (электрорентгенографию) производят без использования рентгеновской пленки, что снижает стоимость исследования. Детектором скрытого излучения в этом случае служит не рентгеновская пленка, а электростатически заряженная селеновая пластина. После экспозиции в специальном устройстве на пластину наносят угольный порошок и переносят изображение на бумагу.

Рентгенографию обычно проводят в двух взаимно перпендикулярных проекциях. Наряду с этим широко используют дополнительные и специальные проекции — косые, аксиальные, тангенциальные и др., что дает возможность изучать невидимые или плохо видимые объекты, осматривать объект со всех сторон, в т.ч. в случае наложения одной структуры на другую. У детей раннего возраста при рентгенографии используют специальные фиксаторы или капсулы, в которых ребенок находится как бы в подвешенном положении, а также фиксирующие стульчики. Эти приспособления ограничивают движения ребенка во время исследования.

Снимки, охватывающие часть тела (например, грудную клетку, брюшную полость), называют обзорными. На обзорных рентгенограммах могут быть выявлены повреждения костей и суставов, перфорации полого органа, патологического скопления газа и жидкости, отложения солей кальция и др. Прицельная рентгенограмма — изображение какой-либо части исследуемого органа или структуры, небольшого патологического объекта. Особое значение имеет прицельная Р. в условиях рентгеноконтрастного исследования желудка и кишечника, когда число отдельных снимков, отражающих различные фазы деятельности этих органов, может достигать десятков. Прицельная Р. в различные периоды времени позволяет дать оценку состояния и функциональной активности органа в динамике (ширины органа, особенностей перистальтики, скорости пассажа рентгеноконтрастного вещества, состояния сфинктеров).

За счет расхождения рентгеновских лучей отображение любой структуры на рентгенограмме несколько больше ее истинного размера. Степень увеличения тем больше, чем ближе исследуемый объект к рентгеновской трубке и чем дальше он находится от пленки, это используется для получения первично увеличенной рентгенограммы. Значительное (в 3—4 раза) увеличение исследуемого объекта и четкое его изображение получают также благодаря использованию острофокусных рентгеновских трубок (фокусное пятно 0,3×0,3 мм и меньше) и высокого напряжения. Увеличительная Р. может быть эффективно использована для оценки небольших изменений структуры костей, суставов, при ангиографии и др. Для получения изображения органа или структуры, близкого по размерам к истинному, тело или его часть максимально приближают к кассете, а расстояние между кассетой и рентгеновской трубкой увеличивают Подобная методика получила название телерентгенографии. Наибольшее значение она имеет при исследовании сердца, позволяя точно измерить величину органа и его частей. С целью снижения дозы излучения и повышения информативности исследования (возможность более отчетливого выявления структур, например элементов легочного рисунка) применяют так называемую щелевую Р., при которой пучок рентгеновского излучения пропускают через перемещающуюся щель.

Особой разновидностью рентгенографии является Флюорография, в основе которой лежит фотографирование рентгеновского изображения с флюоресцентного экрана или с экрана электронно-оптического преобразователя (так называемая крупноформатная флюорография). Крупноформатными флюорокамерами для рентгенографии оснащены современные аппараты общего назначения, а также специализированные остановки для ангиографии урографии.

 

 

Механические испытания

Определение механических свойств материалов и изделий. По характеру изменения во времени действующей нагрузки различают механические испытания статические (на растяжение, сжатие, изгиб, кручение), динамические, или ударные (на ударную вязкость, твёрдость), а усталостные (при многократном циклической приложении нагрузки).

Отдельную группу методов образуют длительные высокотемпературные механические испытания (на ползучесть, длит. прочность, релаксацию). механические испытания проводят при высоких и низких температурах, в агрессивных средах, при наличии надрезов и исходных трещин; при нестационарных режимах, при облучении и акустич. воздействиях и др.

 

1. Испытание на растяжение.

Для этого вида испытания изготовляют стандартные образцы с установленной расчетной длиной для круглого образца l=l0d; для плоского образца /=11,ЗЛо, где d — диаметр образца, мм; Ао— площадь поперечного сечения образца, мм2.

Испытания проводят на специальной машине путем осевого растяжения образца до разрыва, с автоматической записью диаграммы зависимости деформации от нагрузки.

2. Испытание на изгиб.

Испытание на изгиб в холодном или нагретом состоянии проводится для определения способности листового металла принимать заданный по размерам и форме изгиб. Образцы для испытания вырезают из листа без обработки поверхностного слоя и подвергают пробе на изгиб на прессе или в тисках. В зависимости от толщины испытываемого образца выбирают диаметр шарика и нагрузку.

Для углеродистых сталей, имеющих предел прочности 300... 1000 МПа, существует приближенная зависимость между твердостью по Бринеллю НВ и пределом прочности при растяжении: 0 = 0,36 НВ.

Если сталь имеет большую твердость (закаленная сталь, цементированная), а также для тонколистовых сталей твердость определяют по Роквеллу, вдавливая в испытываемый образец шарик диаметром 1,59 мм или алмазный конус. Показатель твердости по Роквеллу HR по специальным таблицам можно перевести в показатель твердости по Бринеллю НВ.

 

3. Испытание на удар.

Испытанием на удар определяют способность работы металла в условиях динамических нагрузок или хрупкость. Чем пластичнее металл, тем лучше он переносит ударные нагрузки. Испытание на удар производят на специальных маятниковых копрах с применением стандартных образцов с надрезом.

 

 

ЗАО "ВЗПП-Микрон"

 

ЗАО "ВЗПП-Микрон" основано в конце 2000 года на базе Воронежского завода полупроводниковых приборов, занимающегося разработкой, освоением и производством изделий электронной техники с 1959 года.

Научно-технический и кадровый потенциал НПО «Электроника» работавшего в области проектирования и производства микроэлектроники с 1959 года позволили ЗАО «ВЗПП-Микрон» в кратчайшие сроки стать лидером в России по выпуску силовых компонентов электронной техники, таких как диоды Шоттки, мощные высоковольтные ультрабыстрые диоды, мощные СВЧ-транзисторы.

Завод обладает следующей производственной базой:

- Силовая микроэлектроника: Диоды Шоттки, TVS диоды, TVS матрицы, Ультра быстрые диоды, Регуляторы напряжения;

- Биполярные интегральные микросхемы: Компараторы, Усилители, Рингеры, Контролеры, Конвертеры и Логические ИС;

- Автомобильная электроника: Электронные контролеры воспламенения (зажигания);

- Силовые транзисторы Дарленгтона (составные транзисторы с объединёнными коллекторами) (внутренний рынок);

- Высокочастотные транзисторы (внутренний рынок).

ЗАО «ВЗПП-Микрон» расположено в промышленной зоне Железнодорожного района г. Воронежа, обладает всей необходимой инфраструктурой. Две производственные линии обеспечивают выпуск более 18 000 пластин диаметром 4’ и 6' в месяц.

Внешнеэкономическая деятельность является стратегическим направлением развития компании. Сейчас продукция предприятия поставляется в Германию, КНР, Тайвань, Южную Корею, Филиппины.

Предприятие в данный момент развивает следующие типы изделий:

- TVS диоды;

- TVS матрицы;

- CrSi Диоды Шоттки;

- NiSi Диоды Шоттки,

- стабилизаторы и регуляторы напряжений положительной и отрицательной полярности с токами нагрузки от 100 mA до 5 А;

- операционные усилители;

- компараторы;

- ШИМ контроллеры в токовом режиме;

- схемы управления преобразователями постоянного напряжения и т.д.

также планируется производить и совершенствовать следующую продукцию:

- Силовые модули;

- IGBT транзисторы;

- МОП – транзисторы.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-30 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: