Нематричный механизм биосинтеза белка.




Билет

1. Биологическое окисление - это совокупность реакций окисления, протекающих во всех живых клетках. Оно проходит 3 способами:

1.отщепление атомов Н+

2.присоединение кислорода

3.перенос электронов

Тканевое дыхание - это разновидность биологического окисления. В процессе тканевого дыхания в организме вырабатывается АТФ.

Тканевое дыхание - это процесс расщепления органических веществ с выделением энергии в виде АТФ, что сопровождается поглощением кислорода, выделением СО2 и образованием воды.

Расщепление органических веществ в организме проходит в 3 стадии:

1 и 2 стадия – это специфические пути превращения органических веществ, Ш стадия -–общая, объдиняет все пути превращения органических веществ. В ней образуется наибольшее количество энергии.

С позиций термодинамики метаболизм представляет собой совокупность процессов, в которой реакции, потребляющие энергию из внешней среды (эндэргонические), сопрягаются с энергодающими (экзэргоническими) реакциями, что позволяет живым существам оказывать постоянное сопротивление нарастанию энтропии. Выяснение биохимических механизмов, приводящих к генерации различных форм биологической энергии, является предметом биоэнергетики. Источником энергии служат реакции, в ходе которых соединения, содержащие атомы углерода в высо-ковосстановленном состоянии, подвергаются окислению, а специальные дыхательные переносчики присоединяют протоны и электроны (восстанавливаются) и в таком виде транспортируют атомы водорода к дыхательной цепи.

Биологические виды энергии. Энергетические превращения в живой клетке подразделяют на две группы: локализованные в мембранах и протекающие в цитоплазме. В каждом случае для «оплаты» энергетических затрат используется своя «валюта»: в мембране это ΔμН+ или ΔμNa+, а в цитоплазме – АТФ, креатинфосфат и другие макроэргические соединения. Непосредственным источником АТФ являются процессы субстратного и окислительного фосфорилирования. Процессы субстратного фосфорилирования наблюдаются при гликолизе и на одной из стадий цикла трикарбоновых кислот (реакция сукцинил-КоА —> сукцинат). Генерация ΔμН+ и ΔμNa, используемых для окислительного фосфорилирования, осуществляется в процессе транспорта электронов в дыхательной цепи энергосопрягающих мембран.Энергия разности потенциалов на сопрягающих мембранах может обратимо превращаться в энергию АТФ. Эти процессы катализируются Н+-АТФ-синтазой в мембранах, генерирующих протонный потенциал, или Na+-АТФ-синтазой (Na+-АТФазой) в «натриевых мембранах» алкалофиль-ных бактерий, поддерживающих ΔμNa+ [Скулачев В.П., 1989]. Cвет или энергия субстратов дыхания утилизируется ферментами фотосинтетической или дыхательной редокс-цепи (у галобактерий – бактериородопси-ном). Генерируемый потенциал используется для совершения полезной работы, в частности для образования АТФ. Будучи макроэргическим соединением, АТФ выполнняет функцию аккумулирования биологической энергии и ее последующего использования для выполнения клеточных функций. «Макроэргичность» АТФ объясняется рядом особенностей его молекулы. Это прежде всего высокая плотность зарядов, сконцентрированная в «хвосте» молекулы, обеспечивающая легкость диссоциации терминального фосфата при водном гидролизе. Продукты этого гидролизапредставляют собой АДФ и неорганический фосфат и далее – АМФ и неорганический фосфат. Это обеспечивает высокую величину свободной энергии гидролизатерминального фосфата АТФ в водной среде.

Тканевое дыхание и биологическое окисление. Распад органических соединений в живых тканях, сопровождающийся потреблением молекулярного кислорода и приводящий к выделению углекислого газа и воды и образованию биологических видов энергии, называется тканевым дыханием. Тканевое дыхание представляют как конечный этап пути превращений моносахаров (в основном глюкозы) до указанных конечных продуктов, в который на разных стадиях включаются другие сахараи их производные, а также промежуточные продукты распада липидов (жирные кислоты), белков (аминокислоты) и нуклеиновых оснований. Итоговая реакция тканевого дыхания будет выглядеть следующим образом:

С6Н12О6 + 6O2 = 6СO2+ 6Н2O + 2780 кДж/моль. (1)

Впервые сущность дыхания объяснил А.-Л. Лавуазье (1743-1794), обративший внимание на сходство между горением органических веществ вне организма и дыханием животных. Постепенно становились ясными принципиальные различия между этими двумя процессами: в организме окисление протекает при относительно низкой температуре в присутствии воды, и его скорость регулируется обменом веществ. В настоящее время биологическое окисление определяется как совокупность реакций окисления субстратов в живых клетках, основная функция которых - энергетическое обеспечение метаболизма. В развитие концепций биологического окисления в XX в. важнейший вклад внесли А.Н. Бах, О. Варбург, Г. Крепс, В.А. Энгель-гардт, В.И. Палладин, В.А. Белицер, С.Е. Северин, В.П. Скулачев.

Потребление кислорода тканями зависит от интенсивности реакций тканевого дыхания. Наибольшей скоростью тканевого дыхания характеризуются почки, мозг, печень, наименьшей – кожа, мышечная ткань (в покое). Уравнение (2) описывает суммарный результат многоступенчатого процесса, приводящего к образованию молочной кислоты и протекающего без участия кислорода:

С6Н12Об = 2С3Н6О3 + 65 кДж/моль. (2)

Этот путь отражает, по-видимому, энергетическое обеспечение простейших форм жизни, функционировавших в бескислородных условиях. Современные анаэробные микроорганизмы (осуществляющие молочнокислое, спиртовое и уксуснокислое брожение) получают для жизнедеятельности энергию, производимую в процессе гликолиза или его модификаций.

Использование клетками кислорода открывает возможности для более полного окисления субстратов. В аэробных условиях продукты бескислородного окисления становятся субстратами цикла трикарбоновых кислот (см. главу 10), в ходе которого образуются восстановленные дыхательные переносчики НАДФН, НАДН и флавиновые коферменты. Способность НАД+ и НАДФ+ играть роль промежуточного переносчика водорода связана с наличием в их структуре амида никотиновой кислоты. При взаимодействии этих кофакторов с атомами

водорода имеет место обратимое гидрирование (присоединение атомов водорода). При этом в молекулу НАД+ (НАДФ+) включаются 2 электрона и один протон, а второй протон остается в среде.

Во флавиновых коферментах (ФАД или ФМН), активной частью молекул которых является изоаллоксазиновое кольцо, в результате восстановления чаще всего наблюдается присоединение 2 протонов и 2 электронов одновременно.Восстановленные формы этих кофакторов способны транспортировать водород и электроны к дыхательной цепи митохондрий или иных энергосопрягающих мембран.

Нематричный механизм биосинтеза белка.

Матричный биосинтез

На ранних этапах исследования синтеза одной дезоксирибонуклеиновой кислоты (ДНК) по информации с другой ДНК, затем рибонуклеиновой кислоты (РНК) по информации, которую хранит в себе ДНК и далее синтез белка по информации матричной РНК все эти процессы последовательного считывания сравнивали с получением отпечатков с типографских матриц. Поэтому запрограммированный с помощью нуклеиновых кислот (НК) процесс сборки новых цепей биополимеров называют матричным биосинтезом, а сами молекулы НК, используемые как программы в матричном биосинтезе, - матрицами. Но более уместно было бы сравнивать несущую информацию НК с лентой магнитофона на которую записана информация либо с дискетой.

У всех живых организмов ДНК является первичным носителем генетической информации. Это значит, что в структуре молекулы ДНК в виде последовательности нуклеотидов записана вся программа, необходимая для жизнедеятельности клетки, ее реакции на различные внешние воздействия.

У прокариот (доядерных организмов) вся наследственная информация представлена на одной кольцевой молекуле ДНК, состоящей из нескольких миллионов пар нуклеотидов. Иногда часть информации содержится в нескольких небольших кольцевых ДНК - плазмидах.

У эукариот (имеющих клеточное ядро) - ДНК в основном сосредоточена в хромосомах. В каждой хромосоме содержится одна двунитевая ДНК, размер которой достигает сотен миллионов пар нуклеотидов. Относительно маленькие молекулы ДНК содержатся в митохондриях. Они необходимы для синтеза митохондриальных РНК и митохондриальных белков. Двунитевая молекула построена по принципу комплементарности. Т. е. когда каждая из четырех НК предпочитает взаимодействовать (образовывать водородные связи) только с одной НК из трех возможных. Так аденин взаимодействует через О-Н связи только с тимином (А -Т), а гуанин с цитозином (Г - Ц).

Синтез полипептидной цепи (ДНК, РНК или белка) в клетках складывается из трех основных этапов: инициации, элонгации и терминации.

Инициация - образование связи между мономерными звеньями создаваемой полимерной цепи. Далее мономер присоединяется к образовавшемуся димеру, тримеру, тетрамеру и т.д. - это уже элонгация.

Элонгация - соединение очередного мономера с растущей полимерной цепью. Этот процесс происходит в активном центре фермента полимеразы. Затем участок, полимера к которому присоединился мономер, выдвигается из зоны активного центра фермента - это процесс транслокации.

Терминация - окончание сборки полимера. Для этого на матрице имеется определенный участок - терминатор (по его информации невозможно подобрать необходимый мономер).

Все процессы, происходящие с участием ДНК можно разделить на два вида:

1) использование информации, записанной на ДНК, для синтеза молекул РНК, а затем клеточных белков

2) сохранение, размножение и изменение информационного содержания молекул ДНК

 

Каждая программа, записанная на ДНК может быть многократно считана.

Способность ДНК к точному самоудвоению при произвольной последовательности нуклеотидов в ее цепях заложен и в самом принципе построения ДНК в виде двунитевой структуры со взаимно комплементарными последовательностями. Это означает, что каждая из цепей содержит полную информацию о строении противоположной цепи. При расхождении двунитевой ДНК каждая из цепей может воспроизвести другую цепь - это процесс репликации. Он реализуется при участии ферментов ДНК-полимераз. Матричный синтез ДНК выполняет две основные функции: репликацию (удвоение) ДНК, т.е. синтез новых дочерних цепей, комплементарных исходным матриксным цепям, и репарацию (восстановление) ДНК, если одна из цепей имеет повреждения. Но не всегда репарация способна восстановить первоначальную структуру ДНК и процесс репликации происходит с поврежденной цепи ДНК. В этом случае происходит наследование повреждений - мутация.

ДНК-полимеразы катализируют перенос дезоксирибонуклеотидных фрагментов от АТФ, ГТФ, ЦДФ, ТДФ на гидроксигруппу растущей или подлежащей регенерации цепи ДНК. Т. е. ДНК-полимеразы относятся к классу трансфераз. Раскручивание двунитевой спирали ДНК для доступа к ней ДНК-полимераз осуществляется двумя ферментами: геликазой и ДНК-топоизомеразой.

Кроме репликации, репарации и мутации ДНК может подвергаться гомологичной рекомбинации. Две близкие по своей первичной структуре молекулы ДНК, расположенные рядом объединяются в четырехнитевую структуру. При этом соседние участки обмениваются фрагментами. Рекомбинация не создает новых генов, но в результате этого процесса возникают новые комбинации признаков, которые могут оказаться весьма существенными при естественном отборе.

ДНК программирует работу ферментов РНК-полимераз, которые катализируют синтез новых молекул РНК из нуклеотидов с последовательностью, комплементарной одной из цепей программирующей ДНК. Этот процесс называют транскрипцией (считывание). Конечным итогом является образование информационных, рибосомных и транспортных РНК. Образованная цепь РНК - первичный транскрипт это еще не готовая РНК и она подвергается дополнительной серии превращений - процессингу (отщеплению одного или нескольких нуклеотидов или наоборот присоединению, но уже без информации с ДНК). Синтез РНК начинается со вполне определенных участков ДНК и во вполне определенное время. Для этого на ДНК имеются участки к которым присоединяются РНК-полимеразы и регуляторные молекулы. Эти участки не подвергаются считыванию и называются нетранскрибируемыми.

Матричный биосинтез РНК (транскрипция) осуществляется при участии ферментов РНК-полимераз. Этот фермент катализирует такой же тип реакции как и ДНК-полимераза (перенос нуклеозид-трифосфата на цепь РНК), но только вместо субстрата ТДФ используется УТФ. Матрицей при транскрипции является двунитевая ДНК. Вблизи активного центра РНК-полимеразы двунитевая спираль раскручивается и фермент составляет цепь РНК по считываемой информации с нити ДНК. РНК составляется по принципу комплементарности с тем отличием, что вместо тимина используется урацил и нуклеозиды, которые содержат не дезоксирибозу, а рибозу.

Инициация проходит на строго определенном участке матрицы ДНК, он называется промотор,и именно с ним происходит специфическое взаимодействие активного центра РНК-полимеразы. После чего начинается синтез цепи РНК. ДНК содержит много таких промоторов и при изменении условий РНК-полимереза может присоединяеться к к другому промотору. Так, при повышении температуры на 2,0-3,0 °С выше физиологического уровня РНК-полимераза присоединяется к промотору, с которого начинается считывание информации необходимой для синтеза специальных защитных белков - БТШ.

Вновь синтезированная РНК еще не готова к выполнению своей функции и подвергается ряду превращений - процессингу. В нем принимают участие многие ферменты. Так, часто цепь РНК необходимо разрезать на несколько более коротких или подровнять концы, удалив лишние нуклеотиды - это осуществляют РНК-азы. Процесс транскрипции является точкой приложения многих биологически активных веществ, например антибиотиков и токсинов. Так, антибиотик рифампицин блокирует действие РНК-полимераз прокариот, а токсин бледной поганки - a-аманитин - РНК-полимеразу эукариот. Это подавляет синтез мРНК для многих жизненно важных белков.

Биосинтез белка согласно информации на РНК называется трансляцией (передачей). Он происходит на сложных надмолекулярных структурах - рибосомах, которые построены из рибосомных РНК и белков. АК для сборки новых полипептидных цепей поступают к рибосомам при участии тРНК, каждая из которых связывает по одной АК. Сборка полипептидной цепи осуществляется по информации, содержащейся на мРНК. В цепи мРНК информация о каждой АК записана в виде комбинации из трех нуклеотидов (например, УУУ или УУЦ- фенилаланин, АУГ-метионин). Такие тринуклеотиды называются кодонами. На рибосомах происходит взаимодействие кодона мРНК с антикодоном тРНК. Антикодон тРНК - это тоже тринуклеотид, а сама тРНК имеет вид кленового листа (или креста). На малой субъединице рибосомы расположен участок, на котором взаимодействуют кодон мРНК с антикодоном тРНК - это декодирующий участок. Инициация синтеза полипептидной цепи начинается со взаимодействия между двумя остатками тРНК один из которых несет на себе АК метионин (с нее обычно все и начинается). Отобраная АК переносится от одной тРНК на тРНТ с которой и начинается синтез белковой цепи. Участок рибосомы, на котором происходит этот перенос содержит фермент пептидилтрансферазу. Он локализован на большой субъединице рибосомы. Молекула тРНК располагается одновременно на двух субъединицах. К начальной молекуле тРНК (с метионином) постепенно присоединяются различные АК посредством пептидной связи, пока на мРНК не встретится участок терминации. На этом синтез полипептида заканчивается.

Рибосомы, как и РНК-полимеразы, являются точками приложения действия ряда антибиотиков, так стрептомицин связывается с малой субъединицей рибосомы прокариот, хлорамфинекол - с большой вблизи активного центра пептидилтрансферазы. При этом тормозится синтез белка бактерий и не изменяется у животных.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: