Графы и способы их представления




Введение

В последние годы особую важность приобрели те разделы математики, которые имеют отношение к развитию цифровых устройств, цифровой связи и цифровых вычислительных машин. Базой для преподавания этих дисциплин наряду с классическими методами анализа непрерывных физических моделей стали алгебраические, логические и комбинаторные методы исследования различных моделей дискретной математики.

Значительно возросла популярность теории графов – ветви дискретной математики. Графы встречаются во многих областях под разными названиями: "структуры" в гражданском строительстве, "сети" – в электронике, "социограммы" – в социологии и экономике, "молекулярные структуры" – в химии, "дорожные карты", электрические или газовые распределительные сети и т. д.

Родившись при решении головоломок и игр, таких, например, как задача о кенигсбергских мостах и игра Гамильтона, теория графов стала мощным средством исследования и решения многих задач, возникающих при изучении больших и сложных систем. Для специалистов по вычислительной технике, информационным системам и системам цифровой связи теория графов – это удобный язык выражения понятий из этой области; многие результаты теории графов имеют непосредственную связь с задачами, с которыми им приходится сталкиваться. Графическая интерпретация различных моделей графов дана на рис. 1.1 Так в виде ориентированных графов можно представить любую логическую или функционально - логическую схему (рис. 1.1,а). На таких графовых моделях можно, например, оценить быстродействие схемы. Блок-схема алгоритма может быть представлена вероятностным графом (рис. 1.1,б), который позволяет оценить временные характеристики алгоритма, затраты процессорного времени, трудоемкость и другие. Графом типа "дерево" можно отобразить практически любую структуру организации или предприятия (рис. 1.1,в).

Широкое применение теория графов получила при исследовании так называемой проблемы оптимизации, возникающей при конструировании больших систем как технических, так и программных, например, таких, как компиляторы.

В рамках этих исследований были разработаны многие, неизвестные ранее теоретико-графовые понятия. Теория графов имеет большую привлекательность для специалистов в области проектирования для построения эффективных алгоритмов и анализа их сложности. Использование аппарата теории графов оказало существенное влияние на разработку алгоритмов конструкторского проектирования схем. Непосредственное и детальное представление практических систем, таких, как распределительные сети, системы связи, приводит к графам большого размера, успешный анализ которых зависит в равной степени, как от эффективных алгоритмов, так и от возможностей компьютерной техники. Поэтому в настоящее время основное внимание сосредоточено на разработке и описании компьютерных алгоритмов анализа графов. В связи с этим основной упор в данном учебном пособии делается на машинные способы представления графов и алгоритмы решения задач на графах, легко реализуемых на ЭВМ.


a


б


Рис. 1.1. Графическая интерпретация применения графовых структур: а – орграф; б – вероятностный граф; в – граф-дерево

Графы и способы их представления

Основные определения

Граф задается множеством точек или вершин х1, х2,..., хn и множеством линий или ребер a1, a2,..., am, соединяющих между собой все или часть точек. Формальное определение графа может быть дано следующим образом.

Графом называется двойка вида

G = (X, A),

где X = {xi}, i = 1, 2,..., n – множество вершин графа, A = {ai}, i = 1, 2,..., m – множество ребер графа.

Графы могут быть ориентированными, неориентированными и смешанными (рис. 1.2). Если ребра у множества A ориентированы, что обычно показывается стрелкой, то они называются дугами, и граф с такими ребрами называется ориентированным графом или орграфом (рис. 1.2,а).


Рис. 1.2.

Если ребра не имеют ориентации, то граф называется неориентированным (рис. 1.2,б). Граф, в котором присутствуют и ребра, и дуги называется смешанным (рис. 1.2,в). В случае, когда G = (X, A) является орграфом, и мы хотим пренебречь направленностью дуг из множества A, то неориентированный граф, соответствующий G, будет обозначаться и называться неориентированным дубликатом или неориентированным двойником (рис. 1.2,г).

Дуга ai может быть представлена упорядоченной парой вершин (хn, хk), состоящей из начальной хn и конечной хk вершин. Например, для графа G1 (рис. 1.2,а) дуга a1 задается парой вершин (x2, x1), а дуга а3 парой (x2, x3). Если хn, хk – концевые вершины дуги ai, то говорят, что вершины хn и хk инцидентны дуге ai или дуга ai инцидентна вершинам хn и хk.

Дуга, у которой начальная и конечная вершины совпадают, называется петлей. В графе G3 (рис. 1.2,в) дуга a7 является петлей.

Каждая вершина орграфа хi может характеризоваться полустепенью исхода d0i) и полустепенью захода dti).

Полустепенью исхода вершины хi — d0i) называется количество дуг, исходящих из этой вершины. Например, для орграфа G1 (рис. 1.2,а) характеристики полустепеней исхода следующие: d01)=1, d02)=2, d03)=2, d04)=1.

Полустепенью захода вершины хi — dti) называется количество дуг, входящих в эту вершину. Например, для орграфа G1: dt1)=2, dt2)=1, dt3)=2, dt4)=1.

Очевидно, что сумма полустепеней исхода всех вершин графа, а также сумма полустепеней захода всех вершин графа равна общему числу дуг графа, т. е.

где n – число вершин графа, m – число дуг.

Каждая вершина неориентированного графа хi может характеризоваться степенью вершины d(хi).

Степенью вершины хi – d(хi) называется количество ребер, инцидентных этой вершине. Например, для орграфа G1 (рис. 1.2,б) характеристики степеней следующие: d(х1)=2, d(х2)=3, d(х3)=3, d(х4)=2.

Способы описания графов



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: