Дайте анализ процессов математизации науки.




Математика является одной из древнейших наук. Само слово “математика” имеет древнегреческие корни и означает “наука” или “знание”. Сейчас предмет изучения математики настолько огромен и разнообразен, что довольно трудно дать определение математики, как науки, занимающейся чем-то определенным.

Почти с самого зарождения математики, она была неразрывно связана с практической деятельностью человека. Более того, именно из этой повседневной практики и появились первые математические абстракции – натуральные числа и простейшие действия с ними: сложение, вычитание и умножение. Это произошло еще в доисторические времена.

С появлением первых государств возникает потребности в развитии и углублении математических знаний. Развитие земледелия, архитектуры дает толчок к возникновению геометрии. Математические знания еще являлись только эмпирическими фактами, о необходимости их доказательства речи не возникало. Многие формулы представлялись в виде неких рецептов, следуя которым можно получить результат. Доказательством выступала практика и опыт: если какой-либо факт подтверждался практически, хотя бы приближенно, но достаточно точно для практических нужд, он считался верным. Поэтому некоторые факты, открытые египтянами, оказались правильными лишь приближенно.

Древнегреческие философы и математики очень много сделали для развития математики. Это и практика строгих доказательств, введенная Фалесом, и замечательные теоремы Пифагора, и методы Архимеда вычисления объемов различных тел, и аксиоматическая система геометрии Евклида, и система буквенных обозначений Диофанта.

Пифагор пытался применить математику для нужд своей философской системы, согласно которой в основе мироздания – числа. Познать мир – это значит познать управляющие им количественные соотношения. Ему приписывается модель солнечной системы, в которой планеты движутся по сферическим орбитам, подчиняющимся некоторым количественным отношениям – так называемая гармония сфер. Также Пифагором и его школой были выявлены интересные числовые закономерности в музыке (высота тона колебания струны зависит от ее длины). Его учение дает первый пример целенаправленного применения математики в объяснении явлений природы, общества и мироздания в целом.

Последующий период, вплоть до 16 в. характеризуется довольно медленным процессом проникновения математики в другие науки. Решаются задачи, вызванные торговой деятельностью, как в Западной Европе, астрономией и мореплаванием (тригонометрия), как на Арабском Востоке и в Индии.

Бурное развитие как самой математики, так и ее приложений наблюдается в Новое время. Переход к новым капиталистическим отношениям, ослабление влияния церкви на философию и науку развязывают исследователям руки, делают их мысли смелее.

Одним из первых, кто почувствовал веяние нового времени и начал по-новому подходить к науке, был Г.Галилей. Для описания результатов, Галилей впервые применил математический аппарат: начала дифференциального исчисления.

И.Кеплер примерно в то же время, анализируя скурпулезные наблюдения Т.Браге за движением Марса, приходит к выводу, что планеты движутся по эллиптическим орбитам вокруг Солнца. При этом он использует теорию конических сечений, открытых более тысячи лет назад древнегреческим математиком Аполлонием Пергским. Это характерный пример того, как математическая теория, не получившая популярности при жизни автора и почти забытая, находит применение в важных вопросах науки спустя много лет.

Р.Декарт известен в математике благодаря методу координат – своеобразному мостику между алгеброй и геометрией. Эта плодотворная идея по сути стала основным толчком для последующего развития математики. В философии Декарт известен как основатель рационализма – попытки математизировать все научное знание того времени. Он использует методы математики и логики в физике, физиологии, этике, философии. Математика взята за эталон ввиду того, что он считал ее образцом стройности и истинности. Строго доказав то или иное утверждение, математик полностью убеждает остальных в его истинности и освобождает тем самым свою науку от споров и сомнений.

Примерно в то же время два других французских математика, Б. Паскаль и П. Ферма, закладывают основы теории вероятности – важной области для математических приложений.

Настоящей революцией в математике и ее приложениях стало открытие дифференциального и интегрального исчисления И.Ньютоном и Г.Лейбницем. Это стало началом широкого проникновения математических методов в физику, механику и астрономию. Основная идея этого метода – идея предела переменной величины – берет свое начало еще в трудах Архимеда, Демокрита и других древнегреческих ученых. Но всю его мощь оценили лишь после введения удобной системы обозначений и метода координат.

XVIII век характеризуется окончательной математизацией физики. Крупнейшие математики того времени: Л.Эйлер, Ж.-Л.Лагранж, П.С. Лаплас развивают анализ бесконечно-малых, делая его основным орудием исследования в естествознании. Полный успех был достигнут с его помощью в небесной механике – описаны движения планет, Луны в рамках закона тяготения Ньютона.

XIX век ознаменовался не только социальными революциями, но и революциями в точных науках. Новые идеи, родившиеся в абстрактных недрах математики, такие как понятие группы, неевклидовая геометрия нашли и до сих пор находят применение в физике, кристаллографии, химии. Новые явления в физике – электричество и магнетизм оказываются хорошо описываемыми “старыми” методами дифференциального и интегрального исчисления с некоторыми дополнениями из векторного анализа. Казалось бы все замечательно: математический дух витал над всеми областями знания, которые тогда считались науками, а сама математика была эталоном строгости и непротиворечивости, к которому должны стремиться остальные науки. Но в конце XIX века в трудах Г.Кантора появляется нарушитель спокойствия – теория множеств. Собственно поначалу ничего такого опасного в ней не было – Кантор попытался математически описать понятие множества – произвольного набора каких-либо математических: натуральных чисел, точек на прямой, вещественно-значных функций и т.д. Параллельно шли работы по так называемым основанием математики: ученые пытались на аксиоматической основе построить математический анализ, теорию действительных чисел, геометрию (список аксиом Евклида оказался неполным, полную аксиоматику геометрии дал Гильберт в 1899 г.). Объяснение этому процессу можно дать следующее: математический аппарат (в особенности метод бесконечно-малых) на протяжении нескольких веков использовался во многих приложениях и зарекомендовал себя как эффективное орудие естествознания; но объяснения почему все применяемые методы правильны с точки зрения логической строгости, не было – ну согласуются с наблюдениями и ладно; но это не значит, что мы застрахованы от “сбоев” в будущем. Для подведения фундамента под эти методы, математики решили использовать испытанный аксиоматический метод. В связи с этим было разработано исчисление предикатов – система логических аксиом и правил вывода из них новых утверждений. С его помощью, опираясь на аксиомы любой области математики, посредством буквально механического применения правил вывода можно получить любую теорему данной области. На этом пути удалось найти аксиомы многих областей математики и свести вопрос о непротиворечивости математического анализа к непротиворечивости арифметики. Теория множеств же является в некотором смысле фундаментом математики: все объекты, с которыми работают математики являются множествами. Но вот уже на первых этапах развития этой теории начали появляться противоречия, что грозило фундаменту всей математики. К счастью в начале XX века удалось придумать аксиоматизацию теорию множеств, свободную (на сегодняшний день) от противоречий.

Физические приложения продолжали развиваться, не ограничиваясь уже одним дифференциальным и интегральным исчислениями: в ядерной физике, например, начали широко использовать многомерную геометрию и теорию групп; в теории относительности замечательные применения нашла неевклидова геометрия. Теория вероятностей возможно даже обогнала математический анализ по числу приложений: методы математической статистики используют в огромном числе наук, начиная с физики и заканчивая психологией и лингвистикой. Развитие математической логики, вызванное программой Гильберта обоснования математики, привело к появлению компьютеров, которые изменили мировоззрение современного человека. Практика ставит новые задачи, которые уже не решаются испытанными в физике методами анализа непрерывных функций. Эти дискретные задачи из экономики, генетики, криптографии и др. характеризуются трудоемким перебором огромного числа вариантов, который не под силу даже компьютерам.

 

Заключение

Движущей силой развития науки есть жизнь, жажда жизни, стремление человека к улучшению условий жизни. В своем развитии наука прошла путь от эмпирического накопления фактов к теоретическому их обобщению и к предсказанию будущих изменений объектов

В принципе можно согласиться с тем, что ныне интегративные процессы в естествознании стали ведущей силой его развития. Однако это утверждение не следует понимать так, что процессы дифференциации научного знания сошли на нет. Они продолжаются. Дифференциация и интеграция в развитии естествознания - не взаимоисключающие, а взаимно дополнительные тенденции.

Роль математики в современном естествознании трудно переоценить. Достаточно сказать, что ныне новая теоретическая интерпретация какого-либо явления считается полноценной, если удается создать математический аппарат отражающий основные закономерности этого явления. Однако не следует думать, что все естествознание в итоге будет сведено к математике. Построение различных формальных систем, моделей, алгоритмических схем лишь одна из сторон развития научного знания.

Проблемы применения математических методов в различных науках связаны с самой математикой, с областью моделирования и c интерпретацией.

Возможности математизации ограничиваются скорее всего сложностью исследуемых явлений. Поэтому, как я думаю, если формулировка проблемы разумна, то рано или поздно можно будет применить математику для ее решения.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: