Общая схема построения графика функции




 

1. Находим область определения функции.

2. Исследуем функцию на периодичность, четность или нечетность.

3. Исследуем функцию на монотонность и экстремум.

4. Находим промежутки выпуклости и точки перегиба.

5. Находим асимптоты графика функции.

6. Находим точки пересечения графика функции с осями координат.

7. Строим график.

Прежде чем перейти к примерам, напомним определения четности и нечетности функции.

Функция у = f (х) называется четной, если для любого значения х, взятого из области определения функции, значение (–х) также принад-лежит области определения и выполняется равенство f (х) = f (–х). График четной функции симметричен относительно оси ординат.

Функция у = f (х) называется нечетной для любого значения х, взятого из области определения функции, значение (–х) также принадлежит об-ласти определения, и выполняется равенство f (–х) = –f (х). График не-четной функции симметричен относительно начала координат.

Пример 9. Построить график .

Решение. Мы используем данные, полученные для этой функции в других примерах.

1. D (у) = (–¥; 0) È (0; +¥).

2. Следовательно, функция нечетная. Ее график будет симметричен относительно начала координат.

3. (см. пример 2). Исследуем функцию на монотонность и экстремум:

 

х (–¥; –1) –1 (–1; 0)   (0; 1)   (1; +¥)
у' +     +
у –2  

max min

 

4. (см. пример 5). Исследуем функцию на выпуклость и найдем точки перегиба.

 

х (–¥; 0)   (0; +¥)
у'' +
у выпукла вверх выпукла вниз
    функция не определена  

 

Несмотря на то, что функция поменяла характер выпуклости при переходе через точку х = 0, но в ней нет перегиба, так как в этой точке функция не определена.

5. (см. примеры 6 и 7). Найдем асимптоты функции:

а) х = 0 – вертикальная асимптота;

б) у = х – наклонная асимптота.

6. Точек пересечения с осями координат у данной функции нет, так как , при любых х Î ú, а х = 0 Ï D(у).

7. По полученным данным строим график функции:

 

Пример 10. Построить график функции .

Решение.

1. D(у) = (–¥; –1) È (–1; 1) È (1; +¥).

2. – функция нечетная. Следовательно, график функции будет симметричен относительно начала координат.

3. Исследуем функцию на монотонность и экстремум:

 

2 – х4 = 0, х2 · (3 – х2) = 0, х1 = 0, х2 = , х3 = .

 

х (–¥; ) (; 0) –1 (–1; 0)   (0; 1)   (1; ) (; +¥)
у'   + +   + +  
у 2,6   –2,6

 

4. Исследуем функцию на выпуклость и точки перегиба:

 

 

х = 0 – точка, подозрительная на перегиб.

 

х (–¥; –1) –1 (–1; 0)   (0; 1)   (0; +¥)
у'' +   +
у выпукла вниз выпукла вверх   выпукла вниз выпукла вниз
      перегиб    

 

5. Найдем асимптоты функции:

а) х = –1, х = 1 – вертикальные асимптоты.

Действительно:


б) у = kx + b.

,

Þ у = –1х + 0 = – х – наклонная асимптота.

 

6. Найдем точки пересечения с осями координат:

х = 0 Þ у = 0 Þ (0; 0) – точка пересечения с осями координат.

7. Строим график:

 

 


ЛИТЕРАТУРА

 

1. Гусак А. А. Математический анализ и дифференциальные уравнения.– Мн.: Тетрасистемс, 1998. – 415 с.

2. Минченков Ю. В. Высшая математика. Производная функции. Дифференциал функции: Учебно-методическое пособие.– Мн.: ЧИУиП, 2007.– 20 с.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: