Основные параметры логических элементов




Динамические параметры. Быстро­действие ЛЭ при переключении определяется электрической схемой, технологией изготовления и характером нагрузки. Для идентификации измерений динамических параметров в технической документации на ИС приводятся параметры эквивалентной нагрузки, устанавливаются требования к амплитуде и длительности фронта входного сигнала. Уровни отсчета напряжений для определения динамических парамет­ров устанавливаются относительно выходных пороговых напряжений «1» и «0» (рис. 2.8). Временные зависимости напряжений в зонах выше или ниже указанных на рисунке пороговых уровней не влияют на работу ЛЭ и поэтому не представляют интереса.

Рис. 2.8. Входной (а) и выходной (б) сиг­налы

инвертирующего ЛЭ

 

Основными динамическими параметра­ми ЛЭ являются задержка распространения сигнала tЗД Р при переключении и длительность положительного (нарастающего) и отрицательного (спадающего) фронтов tФ выходных сигналов.

Задержка распространения сигнала при переходе выходного напряжения от «1» к «0» (при положительной логике* это соответствует отрицательному фронту, при отрицательной — положительному фронту выходного сигнала) определяется как ин­тервал времени между фронтами входного и выходного сигналов ЛЭ, измеренного по заданному уровню.

 

(*Для положительной логики более положительное значение напряжения (высо­кий уровень) соответствует лог. 1, а менее положительное значение напряжения (низ­кий уровень) — лог. 0.

Для отрицательной логики менее положительное значение напряжения (низкий уровень) соответствует лог. 1. а более положительное значение напряжения (вы­сокий уровень) — лог. 0.)

 

Задержка распространения сигнала при переходе выходного напряжения от «0» к «1» (при положительной логике это соответствует положительному фронту, при отрицательной логике — отрицательному фронту выходного сигнала) опреде­ляется как интервал времени между фронтами входного и выходного сигнала ЛЭ, измеренного по заданному уровню. Задержки распространения (, ) измеряются, как правило, по уровню 0,5 ( + ).

При расчете временной задержки сигнала последовательно включенных ЛЭ используется средняя задержка распространения сигнала ЛЭ:

Длительность фронта выходного сигна­ла при переходе напряжения из «1» в «0» () для положительной логики соответ­ствует отрицательному фронту, для отри­цательной логики — положительному фронту.

Длительность фронта выходного сигнала при переходе напряжения из 0 в 1 () для положительной логики соответствует положительному фронту, для отрицательной логики — отрицательному фронту. Иногда в технической документации на ИС , — обозначаются соответственно , . Длительности положительных и отрицательных фронтов измеряют по уровням 0,1 и 0,9 (см. рис. 2.8).

Статические параметры определяют ус­ловия формирования и значения напря­жений высокого и низкого уровней на вы­ходе ЛЭ, его нагрузочную способность, потребляемую мощность при заданных напряжении питания, нагрузке и темпе­ратуре окружающей среды.

К статическим параметрам ЛЭ относят­ся:

выходные и входные напряжения лог.0 и 1 (, , , );

входные и выходные пороговые напряжения лог. 0 и 1 (, , , );

входные и выходные токи лог. 0 и 1(, , , );

токи потребления в состоянии лог. 0 и 1 (, );

потребляемая мощность (P пот).

Выходное пороговое напряжение лог. 0 есть максимальное или минимальное (в зависимости от типа логики) выходное напряжение лог. 0, определяемое пороговой точкой амплитудной переда­точной характеристики в области лог. 0, в которой дифференциальный коэффициент усиления по напряжению КU = 1 для неинвертирующего ЛЭ и КU = -1 для инвертирующего ЛЭ (см. рис. 2.1).

Выходное пороговое напряжение лог. 1 есть минимальное или максималь­ное (в зависимости от типа логики) вы­ходное напряжение лог. 1, определяемое пороговой точкой амплитудной передаточ­ной характеристики в области лог. 1, в которой КU = 1 для неинвертирующего ЛЭ, КU = -1 для инвертирующего ЛЭ.

Порог зоны переключения лог. 0 есть пороговое напряжение лог. 0, опреде­ляемое пороговой точкой амплитудной пе­редаточной характеристики в области лог. 0, в которой КU = 1 для неинвертирующего ЛЭ и КU = -1 для инвертирующего ЛЭ (см. рис. 2.1).

Порог зоны переключения лог. 1 есть пороговое напряжение лог. 1, опре­деляемое пороговой точкой амплитудной передаточной характеристики в области лог. 1, в которой КU = 1 для неинверти­рующего ЛЭ и КU = -1 для инверти­рующего ЛЭ.

Входной ток ЛЭ задается для неблаго­приятного режима работы в пределах до­пустимых температур окружающей среды и напряжения питания как для уровня лог. 0 (), так и для уровня лог. 1 (). Выходные токи , характеризуют нагрузочную способность ЛЭ. (Втекающие токи имеют положительный знак, выте­кающие токи — отрицательный знак.) Помехоустойчивость определяется отно­сительно этих токов. Поэтому увеличение коэффициента разветвления приводит к снижению помехоустойчивости.

Входной ток лог.1 определяется как входной ток при напряжении лог. 1 на входе ЛЭ.

— входной ток лог. 0 определяется как входной ток при напряжении лог. 0 на входе ЛЭ.

— выходной ток лог. 1 определя­ется как выходной ток при напряжении лог. 1 на выходе ЛЭ.

— выходной ток лог. 0 определяет­ся как выходной ток при напряжении лог. 0 на выходе ЛЭ.

Ток, потребляемый от источника (ис­точников) питания ЛЭ (I пот), зависит от типа ЛЭ. Для ЛЭ ЭСЛ он почти постоянен (если не принимать во внимание нагрузку) и не зависит от его логического состояния, для ЛЭ ТТЛ ток имеет разные значения для состояния «0» () и «1» (). Кроме того, ЛЭ ТТЛ имеют выбросы тока во время переходных процессов при переключении ЛЭ, что приводит к существенному увеличению тока потребления на высоких частотах. Амплитуда и длительность вы­броса зависят от характера и величины на­грузки, схемотехники выходного каскада ЛЭ ТТЛ, длины линии связи и пр.

 

Мощность, потребляемая ЛЭ от источников питания ,

где Ui —напряжение i -го источника питания; Ii — ток в соответствующей цепи питания.

Если потребляемая мощность зависит от выходного напряжения лог. 0 () или 1 (), то в качестве основного па­раметра используют среднюю потребляе­мую мощность Р пот ср = ( + )/2. Для ЛЭ, потребляющих значительную мощность при переключении, средняя потребляемая мощность в технической документации задается в виде зависимости Р пот ср = f (F имп), где F имп — частота следования импульсов.

Интегральные параметры отражают уровень развития технологии и схемотех­ники и качество цифровых ИС. Основными интегральными параметрами ИС являют­ся энергия переключения и уровень интеграции N.

Рис. 2.9. Изменение основных параметров цифровых интегральных схем:

Δ — минимальный топологический размер компо­нентов, мкм;

NЛЭ — степень интеграции ЛЭ; N ЗУ — число бит памяти на кристалле

 

Энергия переключения . Как правило, при определении энергии переключения используют типовые значения задержки распространения и потребляемой мощности. (Если потреб­ляемая мощность выражается в милливат­тах, а задержка распространения — в наносекундах, то энергия переключения имеет размерность пикоджоуль.) По мере совершенствования технологии и схемотехники и уменьшения размеров элементов на кристалле энергия переключения непрерывно снижается — примерно на полтора порядка за десятилетие (рис. 2.9). При заданных технологии и схемотехнике, или при заданной энергии переключения ( = const), можно создавать различные серии ИС, обладающие либо высоким быстродействием (малым значением τзд р) и большой потребляемой мощностью, либо низким быстродействием и малой потребляемой мощностью. По этому параметру в настоящее время производят оценку уровня развития цифровой микроэлектроники и сравнение различных типов ИС.

Степень интеграции N логических цифровых микросхем определяется числом простейших эквивалентных ЛЭ — обычно двухвходовых вентилей — на кристалле (см. рис. 2.9 и табл. 2.1). Иногда степень интеграции микросхем измеряют числом элементов (резисторов, транзисторов, диодов) на кристалле, но при этом совершенно не учитывается специфика логических цифровых ИС, где межэлементные связи занимают существенную часть площади кристалла. Функциональную сложность ИС запоминающих устройств, имеющих регулярную структуру, можно оценивать числом бит памяти на кристалле.

 

Таблица 2.1

Условное обозначение Число вентилей на кристалл Число бит памяти на кристалл
ИС До 10 До 102
СИС 102 103
БИС 103 104
СБИС 104 105
СБИС более высокой степе- ни интеграции 105 106
106 107
   

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-10-17 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: