Криволинейный интеграл первого рода




Криволинейные интегралы. Понятие и примеры решений

 

Жизнь такова, что из любой новой темы (не обязательно научной) пытливый человеческий ум стремится «выжать» по максимуму – все идеи и все возможности. Появилось понятие вектора, и, пожалуйста – курс аналитической геометрии не заставил себя ждать. А также дифференциальная геометрия, теории поля и прочие гранитные плиты для зубов разной крепости. Пришла наука к понятию производной – …ну, думаю, тут объяснять не нужно! …некоторые до сих пор отойти не могут =)

И интегралы тоже не стали исключением из этого правила. Давайте посмотрим на криволинейную трапецию и вспомним классическую схему интегрального исчисления:

– отрезок дробится на части;
– составляется интегральная сумма, которая равна площади ступенчатой фигуры;
– и, наконец, количество отрезков разбиения устремляется к бесконечности – в результате чего эта фигура превращается в криволинейную трапецию площади .

Аналогично выводятся формулы объема тела вращения, длины дуги кривой и др.

Более того, наводящие ужас кратные интегралы «устроены» принципиально так же – по существу, они отличается только областью интегрирования: у двойных интегралов – это не отрезок, а плоская фигура, у тройных – пространственное тело.

И, чтобы у вас сразу отлегло от сердца – наши «сегодняшние» криволинейные интегралы далеки от «ужаса», они больше похожи на «обычные» кошмары интегралы. Уже из самого названия нетрудно догадаться, что областью интегрирования таких интегралов являются кривые линии.

На уроке о пределе функции двух переменных я придумал реалистичную модель, которая снискала большую популярность – да такую, что там каждый день собираются целые экскурсии =) Итак, паркет вашей комнаты – это координатная плоскость , в углу стоит ось , а вверху «зависло» расправленное одеяло, заданное функцией .

Возьмите в руки мел и начертите на полу под одеялом произвольную кривую . Как вариант, у неё могут быть «острые углы» – такая линия называется кусочно-гладкой. Можно изобразить даже ломаную. ВажнА спрямляемость (см. урок о методах Эйлера ) и непрерывность пути интегрирования. Теперь суть:

Представьте, что от одеяла осталась всего лишь одна нитка – лежащая над кривой . Вертикальная поверхность, расположенная между кривой «эль» и этой «ниткой» представляет собой фрагмент криволинейного цилиндра. Представили? Отлично!

Криволинейный интеграл первого рода

имеет вид и по модулю* равен площади данного фрагмента.

* Если график целиком или бОльшей частью расположен ниже плоскости , то площадь получится со знаком «минус».

Согласно общему принципу интегрирования, произведение бесконечно малого кусочка кривой на соответствующую высоту равно бесконечно малому элементу площади данной поверхности: . А криволинейный интеграл как раз и объединяет эти элементы вдоль всей кривой: .

! Важно: во многих источниках информации дифференциал дуги кривой обозначают через , что, на мой взгляд, не слишком удачный выбор.

Если на плоскости вместо кривой начертить отрезок прямой, то получится не что иное, как плоская криволинейная трапеция, параллельная оси . Соответствующий интеграл хоть и каламбурно, но с полным правом можно назвать «прямолинейным».

В частности, если подынтегральная функция задаёт плоскость , то криволинейный интеграл равен площади «ленты» единичной высоты, а также и длине самой линии интегрирования: .
…чего только не придумаешь, чтобы не делать чертежей =)



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-06-06 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: