Атомические разложения функций в пространстве Харди
Міністерство Освіти України
Одеський державний університет
ім. І.І.Мечнікова
Інститут математики, економіки та механіки
Атомічні розкладення функцій
У просторі Харді
Дипломна робота
студентки V курсу
факультету математики
Семенцовой В.А.
Науковий керівник
Вартанян Г.М.
Одеса - 2000
Содержание
Введение.................................................................................... 3
Глава I. Основные сведения об интеграле Пуассона и
пространствах , и ................................. 8
§I.1. Интеграл Пуассона..................................................... 8
§I.2. Пространства ....................................................... 12
§I.3. Пространства и ......................................... 17
§I.4. Произведение Бляшке, нетангенциальная
максимальная функция............................................... 22
Глава II. Атомические разложения функции в пространстве
, пространство ВМО........................................ 26
§II.1. Пространство , критерий принадлежности
функции из пространству ....................... 26
§II.2. Линейные ограниченные функционалы на ,
двойственность и ВМО.................................. 32
Литература.................................................................................. 37
Введение.
Целью настоящей работы является изучение основных понятий и результатов, полученных в области пространств Харди, которая не изучалась в рамках университетского курса. В работе прослежена взаимосвязь между следующими понятиями: интеграл Пуассона, пространства , , и , раскрыта суть и структура этих объектов. Описание указанных понятий вводится именно в такой последовательности, так как определение каждого последующего объекта дается на основе понятий, расположенных левее в выше перечисленном ряду объектов.
Работа состоит из двух глав, каждая из которых делится на параграфы. В первой главе изучены свойства пространств , , , а во второй мы доказываем коитерий принадлежности функции из пространству и двойственность пространств и .
|
В работе мы рассматриваем случай периодических функций. Используемые обозначения имеют следующий смысл:
- пространство периодических, непрерывных на функций;
- пространство периодических, бесконечно дифференцируемых на функций;
- пространство периодических, суммируемых в степени р на функций, т.е.для которых , ;
- пространство периодических ограниченных на функций;
- носитель функции .
В §I.1.вводится понятие интеграла Пуассона: интегралом Пуассона суммируемой на [-p,p] 2p-периодической комплекснозначной функции называется функция
¦r (x) = ,
где , t Î [ -p, p ] - ядро Пуассона.
Здесь мы доказываем следующие свойства ядра Пуассона, которые мы неоднократно будем использовать в ряде доказательств:
а) ;
б) ;
в) для любого d>0
Основной целью данного параграфа являются две теоремы о поведении интеграла Пуассона при :
Теорема 1.
Для произвольной (комплекснозначной) функции (-p, p), 1 £ p < ¥, имеет место равенство
;
если же ¦ (x) непрерывна на [ -p, p ] и ¦ (-p) = ¦ (p), то
.
Теорема 2 (Фату).
Пусть - комплекснозначная функция из . Тогда
для п.в. .
В этом параграфе мы обращались к следующим понятиям:
Определение1. Функция называется аналитической в точке , если она дифференцируема в этой точке и в некоторой ее окрестности. Говорят, что функция аналитична на некотором множестве,если она аналитична в каждой точке этого множества.
|
Определение2. Действительная функция двух действительных переменных называется гармонической в области , если и удовлетворяет уравнению Лапласа:
.
Определение3. Две гармонические функции и , связанные условиями Коши-Римана: , , называются гармонически сопряженными функциями.
Определение4. Под нормой пространства понимается
, .
Определение5. Под нормой пространства понимается
, .
Определение6. Пусть (или , ). Модуль непрерывности (соответственно интегральный модуль непрерывности) функции определяется равенством
, .
(, ).
Определение7. Последовательность функций, определенных на множестве Х с заданной на нем мерой, называется сходящейся почти всюду к функции , если для почти всех , т.е. множество тех точек , в которых данное соотношение не выполняется, имеет меру нуль.
В §I.2 мы рассматриваем пространства - это совокупность аналитических в единичном круге функций F (z), для которых конечна норма
.
Основным результатом этого параграфа является теорема о том, что любую функцию () можно предсавить в виде
, , ,
где для п.в. , при этом
;
.
Использованные в данном параграфе понятия мы принимаем в следующих определениях:
Определение8. Говорят, что действительная функция , заданная на отрезке [a,b], имеет ограниченную вариацию, если существует такая постоянная , что каково бы ни было разбиение отрезка [a,b] точками выполнено неравенство .
Определение9. Действительная функция , заданная на отрезке [a,b], называется абсолютно непрерывной на [a,b], если для любого найдется число такое, что какова бы ни была система попарно непересекающихся интервалов , с суммой длин, меньшей : , выполняется неравенство .
|
В третьем параграфе первой главы мы переходим к рассмотрению пространств и . Пространство () представляет собой совокупность тех функций , , которые являются граничными значениями функций (действительных частей функций) из , т.е. представимы в виде (). Здесь мы получаем следующие результаты: при пространство совпадает с , а при р=1 уже, чем , и состоит из функций , для которых и .
В §I.4 мы вводим понятие произведения Бляшке функции , аналитической в круге с нулями , () с учетом их кратности:
,
где - кратность нуля функции при .
Здесь доказывается, что каждая функция представима в виде
, где не имеет нулей в круге и , ,а - произведение Бляшке функции .
Затем мы рассматриваем понятие нетангенциальной максимальной функции. Пусть , , - произвольное число. Обозначим через , , область, ограниченную двумя касательными, проведенными из точки к окружности , и наибольшей из дуг окружности, заключенных между точками касания (при вырождается в радиус единичного круга). Для положим
, ,
где - интеграл Пуассона функции . Функция называется нетангенциальной максимальной функцией для .
Тут же мы доказываем теорему об оценке : если (), , то и .
Первые результаты о максимальных функциях были получены в 1930 году Харди и Литтлвудом.
Во второй главе два параграфа.
В §II.1 рассматривается пространство . Как ранее отмечалось, оно уже, чем . Поэтому в данном параграфе большой интерес представляет теорема - критерий принадлежности функции пространству . Здесь вводится понятие атома: действительная функция называется атомом, если существует обобщенный интервал такой, что
а) ; б) ; в) .
Атомом назовем также функцию , . Под обобщенным интервалом понимается либо интервал из , либо множество вида ().
Данный параграф посвящен аналогу теоремы, доказанной в 1974 году Р.Койфманом о том, что функция тогда и только тогда, когда функция допускает представление в виде
, , где , , - атомы. (*)
При этом , где inf берется по всем разложениям вида (*) функции , а с и С - абсолютные константы.
Роль атомических разложений заключается в том, что они в ряде случаев позволяют свести вывод глубоких фактов к относительно простым действиям с атомами.
В частночти, из атомического разложения функций, принадлежащих пространству , легко вытекает полученный в 1971 году Ч.Фефферманом результат о двойственности пространств и . Доказательству этого факта и посвящен второй параграф данной главы. Сперва мы вводим определение : пространство ВМО есть совокупность всех функций , удовлетворяющих условию
, (91)
где , а sup берется по всем обобщенным интервалам . А затем доказываем теорему о том, что .
Глава I.
Основные сведения об интеграле Пуассона и
пространствах , и
I.1.Интеграл Пуассона.
Пусть ¦(x), g (x), x ÎR1 –суммируемые на [-p, p], 2p- периодические, комплекснозначные функции. Через f*g(x) будем обозначать свертку
f*g(x) = dt
Из теоремы Фубини следует, что свертка суммируемых функций также суммируема на [-p,p] и
cn (f*g) = cn (f)× c-n (g), n = 0, ±1, ±2,... (1)
где { cn (f)} - коэффициенты Фурье функции f (x):
cn (f)= - i n t dt, n = 0, ±1, ±2,¼
Пусть ¦ Î L1 (-p, p). Рассмотрим при 0 £ r < 1 функцию
¦r (x) = n (f) r| n | ei n x, x Î [ -p, p ]. (2)
Так как для любых x Î [ -p, p ], n = 0, ±1, ±2,¼, а ряд сходится (так как согласно теореме Мерсера [4] коэффициенты Фурье любой суммируемой функции по ортогональной системе ограниченных в совокупности функций стремятся к нулю при ), то по признаку Вейерштрасса ряд в правой части равенства (2) сходится равномерно по х для любого фиксированного r, 0 £ r < 1. Коэффициенты Фурье функции ¦r (х) равны cn (fr) = cn (f)× r| n |, n = 0, ±1, ±2, ¼, а это значит, что ¦r (x) можно представить в виде свертки:
¦r (x) = , (3)
где
, t Î [ -p, p ]. (4)
Функция двух переменных Рr (t), 0 £ r <1, t Î [ -p, p ], называется ядром Пуассона, а интеграл (3) - интегралом Пуассона.
Следовательно,
Pr (t) = , 0 £ r < 1, t Î [ -p, p]. (5)
Если ¦Î L1 (-p, p) - действительная функция, то, учитывая, что
c-n (f) = , n = 0, ±1, ±2,¼, из соотношения (2) мы получим:
fr (x) =
= , (6)
где
F (z) = c0 (f) + 2 (z = reix ) (7)
- аналитическая в единичном круге функция как сумма равномерно сходящегося по х ряда [5]. Равенство (6) показывает, что для любой действительной функции ¦Î L1(-p, p) интегралом Пуассона (3) определяется гармоническая в единичном круге функция
u (z) = ¦r (eix ), z = reix, 0 £ r <1, x Î [ -p, p ].
При этом гармонически сопряженная с u (z) функция v (z) c v (0) = 0 задается формулой
v (z) = Im F (z) = . (8)
Утверждение1.
Пусть u (z) - гармоническая (или аналитическая) в круге | z | < 1+e (e>0) функция и ¦ (x) = u (eix), xÎ[ -p, p ]. Тогда
u (z) = (z = reix, | z | < 1) (10)
Так как ядро Пуассона Pr (t) - действительная функция, то равенство (10) достаточно проверить в случае, когда u (z) - аналитическая функция:
= , | z | < 1+ e.
Но тогда коэффициенты Фурье функции связаны с коэффициентами Фурье функции следующим образом:
и равенство (10) сразу следует из (2) и (3).
Прежде чем перейти к изучению поведения функции ¦r (x) при r®1, отметим некоторые свойства ядра Пуассона:
а) ;
б) ; (11)
в) для любого d>0
Соотношения а) и в) сразу следуют из формулы (5), а для доказательства б) достаточно положить в (2) и (3) ¦ (х) º 1.
Теорема 1.
Для произвольной (комплекснозначной) функции (-p, p), 1 £ p < ¥, имеет место равенство
;
если же ¦ (x) непрерывна на [ -p, p ] и ¦ (-p) = ¦ (p), то
.
Доказательство.
В силу (3) и свойства б) ядра Пуассона
. (12)
Для любой функции , пользуясь неравенством Гельдера и положительностью ядра Пуассона, находим
.
Следовательно,
.
Для данного e > 0 найдем d = d (e) такое, что . Тогда для r, достаточно близких к единице, из свойств а)-в) мы получим оценку
.
Аналогично, второе утверждение теоремы 1 вытекает из неравенства
.
Теорема 1 доказана.
Дадим определения понятий "максимальная функция" и "оператор слабого типа", которые понадобятся нам в ходе доказательства следующей теоремы.
ОпределениеI.1.
Пусть функция , суммируема на любом интервале (a,b), a<b, . Максимальной функцией для функции называется функция
,
где супремум берется по всем интервалам I, содержащим точку х.
Определение I.2.
Оператор называется оператором слабого типа (р,р), если для любого y > 0
, .
Теорема 2 (Фату).
Пусть - комплекснозначная функция из . Тогда
для п.в. .
Доказательство.
Покажем, что для и
, (13)
где С - абсолютная константа, а M (f, x) - максимальная функция для f (x) *). Для этой цели используем легко выводимую из (5) оценку
(К - абсолютная константа).
Пусть - такое число, что
.
Тогда для
.
Неравенство (13) доказано. Возьмем слабый тип (1,1) оператора . Используя его, найдем такую последовательность функций ,что
,
(14)
для п.в. .
Согласно (13) при xÎ (-p,p)
Учитывая, что по теореме 1 для каждого xÎ [-p, p] и (14)
из последней оценки получим
при r®1.
Теорема 2 доказана.
Замечание1.
Используя вместо (13) более сильное неравенство (59), которое мы докажем позже, можно показать, что для п.в. xÎ [-p, p] , когда точка reit стремится к eix по некасательному к окружности пути.
§I.2.Пространства Hp.
Определение I.3.
Пространство - совокупность аналитических в единичном круге функций F (z), для которых конечна норма
. (15)
Пусть комплекснозначная функция удовлетворяет условиям
(16)
тогда функция F (z), определенная равенством
(17)
принадлежит пространству , причем
. (18)
Действительно, аналитичность функции F (z) следует из (16) и равенства (2). Кроме того, в силу неравенства мы имеем
(*)
С другой стороны, по теореме 1 (а при р=¥ в силу теоремы 2)
. Отсюда (**)
Учитывая (*) и (**), получим (18).
Ниже мы докажем, что любую функцию можно представить в виде (17). Для этого нам потребуется
Теорема 3.
Пусть комплекснозначная функция j (t) имеет ограниченную вариацию на [ -p,p] и
(19)
Тогда j (t) абсолютно непрерывна на [-p,p].
Замечание2.
В (19) и ниже рассматривается интеграл Лебега-Стилтьеса, построенный по комплекснозначной функции ограниченной вариации j (t). Мы говорим, что
j (t)= u (t)+ i v (t) имеет ограниченную вариацию (абсолютно непрерывна), если обе действительные функции u (t) и v (t) имеют ограниченную вариацию (соответственно абсолютно непрерывны). При этом интеграл
определен для каждой непрерывной на [-p,p] функции f (t), а также если
- характеристическая функция замкнутого множества .
Доказательство теоремы 3.
Нам достаточно проверить, что для любого замкнутого множества ,
,
(20)
Для этой цели убедимся, что справедлива
Лемма 1.
Пусть F - замкнутое, а V - открытое множества, причем и
. Тогда для всякого , существует функция вида
, (21)
обладающая свойствами:
а) ;
б) ; (22)
в) .
Выведем из леммы 1 оценку (20), а затем докажем саму лемму 1.
Пусть , где - конечная или бесконечная последовательность дополнительных интервалов множества F, и для
.
Очевидно, что - открытое множество и .
Рассмотрим для данных функцию , построенную в лемме 1 для числа e и множества . Тогда нетрудно проверить[3], что если , а , то разность
. (23)
Но в силу (19) и равномерной сходимости ряда (21) (так как ряд Фурье бесконечно дифференцируемой функции сходится равномерно)
,
и мы получаем равенство (20).
Перейдем к доказательству леммы 1. Нам понадобится
ОпределениеI.4.
Средние Фейера - это средние вида
, где , , - ядро Дирихле,
, - ядро Фейера.
Отметим, что при ядро Фейера обладает следующими свойствами: а) , ; б) ,
Мз которых вытекает, что для и
,
Также известно [3], что средние Фейера равномерно сходятся к .
Пусть f(t) - непрерывная на [-p, p] функция, для которой
и
Так как средние Фейера равномерно сходятся к и
, то существует тригонометрический полином
(24)
такой, что
(25)
Пусть . Рассмотрим для каждого d>0 такую функцию , что
,
(функцию можно построить следующим образом: взять замкнутое множество с мерой , достаточно близкой к 2p, и положить
).
Так как (здесь число m то же, что в (24)), то для достаточно малых d>0 функция удовлетворяет соотношениям
(26)
При этом , если . Тогда средние Фейера функции h(t) имеют вид
и при достаточно большом N
(27)
Положим
, (28)
Так как h(t) - действительная функция, то , n=0,±1,±2,¼. Поэтому
и . (29)
Определим искомую функцию g(t):
Ясно, что , а из (24) и (28) следует, что при n<0, т.е.
(30)
В силу соотношений (25), (27) и (29) для
,
а для
.
Наконец, для любого
.
Таким образом, функция g(t) обладает всеми нужными свойствами (22). Лемма1, а вместе с ней и теорема 3 доказаны.
Теорема 4.
Пусть функция . Тогда для п.в. существует предел
(31)
При этом
1) , , ;
2) ;
3) .
Доказательство:
Нам достаточно доказать, что для каждой функции найдется функция такая, что имеет место 1). Действительно, если , то тем более и из 1) и теоремы 2 вытекает справедливость равенства (31) для п.в. . При этом и по теореме 1