Пример решения задачи на расчет разветвленной цепи.




ОбразЦЫ РЕШЕНИЯ ЗАДАЧ НА РАСЧЕТ ОДНОФАЗНЫХ И ТРЕХФАЗНЫХ ЦЕПЕЙ ПЕРЕМЕННОГО ТОКА.

Пример решения задачи на расчет неразветленной цепи.

Задача:Последовательно с катушкой, активное сопротивление которой R1=10 Ом и индуктив­ность L=0,0318 Гн, включен прием­ник, обладающий активным сопро­тивлением R2=1 Ом и емкостью С=796 мкф (рис. I). К цепи при­ложено переменное напряжение, изменяющееся по закону u=169,8·sin(314·t).

 
 


Рис. 1.

Определить: полное сопротив­ление цепи, коэффициент мощно­сти цепи, ток в цепи, активную, реактивную и полную мощности, а также построить в масштабе векторную диаграмму.

Как нужно изменить величину емкости, чтобы в цепи наступил резонанс напряжений? Индуктивность катушки остается постоянной.

Решение:

1. Сравнивая закон изменения напряжения о цепи с общим выражением u=UM·sin(ωt) , можно заключить, что амплиту­да напряжения UM=169,8 B, а ω=2π·f=314 (1/сек).

Отсюда действующее значение напряжения

Частота тока

2. Индуктивное сопротивление катушки

XL= ωL=2π·f·L=2·3.14·50·0.0318=10 Ом.

3. Емкостное сопротивление конденсатора

4. Полное сопротивление цепи

5. Коэффициент мощности цепи

φ=28,35ْ

6. Сила тока в цепи

7. Активная мощность

P=I2(R1+R2)=9.62(10+1)=1014 Bт.

или

P=U·I·cos φ = 120·9.6·0.88=1014 Вт.

8. Реактивная мощность

Q=I2XL- I2XC=I2(XL-XC)=9.62(10-4)=553 Вар.

или

Q=I·U·sin φ=120·9.6·0.49=553 Вар.

9. Полная мощность

S=I2z=9.62·12.5=1152 ВА

или

S=U·I=120·9.6=1152 BA

или

10. Построение векторной диаграммы начинаем с определения потерь напряжений на каждом сопротивлении:

UR1=I·R1=9.6·10=96(В);

UR2=I·R2=9.6·1=9.6(В);

UL=I·XL=9.6·10=96(В);

UC=I·XC=9.6·4=38.4(В);

UR2
UR1

Рис.2

 

Затем выбираем масштаб для напряжений (см. рис. 2). Построение диаграммы начинаем с вектора тока I, который от­кладываем по горизонтали вправо от точки О (рис. 2). Вдоль векто­ра тока откладываем в принятом масштабе напряжения UR1 и UR2 теряемые в активных сопротивлениях цепи. Эти напряжения совпа­дают по фазе с током. От конца вектора UR2 откладываем в сторону опережения вектора тока под углом 90° вектор потери напряжения UL в индуктивном сопро­тивлении. Из конца векто­ра UL откладываем вектор UC в сторону отставания от вектора тока на угол 90°. Геометрическая сумма че­тырех векторов равна пол­ному напряжению, прило­женному к цепи, т. е.

U=UR1+UR2+UL+UC.

11. Для получения ре­зонанса напряжений необ­ходимо, чтобы ХCL=10 Ом, тогда , откуда При этом ток в цепи станет , где .

Пример решения задачи на расчет разветвленной цепи.

Задача: Катушка с активным сопротивлением R=20 и ин­дуктивностью L=0,0637 Гн соединена параллельно с конденсатором емкостью С =65 мкФ (рис. 3).

Определить: токи в ветвях и в неразветвленной части цепи, ак­тивные мощности ветвей, углы сдвига фаз между током и напряже­нием первой и второй ветвей и всей цепи, если к цепи приложено напряжение U=100B, частота тока f=50 Гц. Как нужно изменить емкость во второй ветви, чтобы в цепи наступил резонанс токов?

R

Рис.3.

 

Построить векторную диаграмму.

Решение:

1. Индуктивное сопротивление катушки

XL=ωL=2π·f·L=2·3.14·50·0.0637=20 Ом.

2. Емкостное сопротивление конденсатора

3. Токи в ветвях

4. Коэффициенты мощности ветвей

(отстающий)

(опережающий).

5. Активные и реактивные составляющие токов ветвей

;

IR2=0; IP2=2.04·1.0=2.04 A.

6. Ток в неразвлетвленной части цепи

Реактивные токи ветвей должны вычитаться, так как реактивный ток ветви с емкостью принимается отрицательным.

7. Коэффициент мощности всей цепи

8. Активные мощности ветвей

P2=0

Построение векторной диаграммы начинаем c вектора напряжения U (рис. 4). Под углом φ1 к вектору напряжения (в сторону отста­вания) откладываем вектор тока I1, под углом φ2 (в сторону опере­жения) - вектор тока I2. Геометрическая сумма этих векторов пред­ставляет ток I в неразветвленной части цепи. Проекции токов вет­вей на вектор напряжения являются активными составляющими IR1 и IR2; проекции этих токов на вектор, перпендикулярный вектору на­пряжения, - реактивными составляющими IP1 и IP2.

9. При резонансе токов ток I совпадает на фазе с напряжением, что возможно при равенстве реактивных токов ветвей IP1=IP2 (см. векторную диаграмму (рис.5)).

Тогда емкостное сопротивление этой ветви

отсюда

IR1

Рис. 5.





©2015-2017 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.

Обратная связь

ТОП 5 активных страниц!