Физический смысл производной




Практическая работа №2.

Тема: «Нахождение производной функции»

Цель: Сформирование практические навыки нахождения производных функций;

Теоретическая часть

Производной функции в точке называется предел отношения приращения функции в этой точке к приращению аргумента, когда приращение аргумента стремится к нулю:

.

 

Функция , имеющая производную в каждой точке некоторого промежутка, называется дифференцируемой в этом промежутке.

Производная функции обозначается , , или , , .

Нахождение производной называется дифференцированием.

 

 

Правила дифференцирования

 

1. , c – const,

2.

3. , где

4.

 

Таблица производных элементарных функций

 

, c - const

Геометрический смысл производной

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке. Производная также равна тангенсу угла наклона касательной.

Пример 1. На рисунке изображён график функции и касательная к нему в точке с абсциссой Найдите значение производной функции в точке

Производная функции в точке равна тангенсу угла наклона касательной, проведенной в точке .

Достроив до прямоугольного треугольника АВС, получим:

Ответ: 0,25.

Пример 2. На рисунке изображён график функции и касательная к нему в точке с абсциссой
Найдите значение производной функции в точке

Начнём с определения знака производной. Мы видим, что в точке функция убывает, следовательно, её производная отрицательна. Касательная в точке образует тупой угол с положительным направлением оси . Поэтому из прямоугольного треугольника мы найдём тангенс угла , смежного с углом .

Мы помним, что тангенс угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему: Поскольку , имеем:

Ответ: −0, 25.

Касательная к графику функции

Пример 3. Прямая является касательной к графику функции

Найдите абсциссу точки касания.

Запишем условие касания функции и прямой в точке

При значения выражений и равны.

При этом производная функции равна угловому коэффициенту касательной, то есть .

Из второго уравнения находим или Первому уравнению удовлетворяет только .

Физический смысл производной

Мгновенная скорость — это производная от координаты по времени. Но это не единственное применение производной в физике. Например, cила тока — это производная заряда по времени, то есть скорость изменения заряда. Угловая скорость — производная от угла поворота по времени.

Пример 1. Материальная точка движется прямолинейно по закону , где — расстояние от точки отсчета в метрах, — время в секундах, измеренное с начала движения. Найдите ее скорость (в м/с) в момент времени с.

Мгновенная скорость движущегося тела является производной от его координаты по времени. Это физический смысл производной. В условии дан закон изменения координаты материальной точки, то есть расстояния от точки отсчета:

Найдем скорость материальной точки как производную от координаты по времени:

В момент времени получим:

.

Ответ: 3

ХОД РАБОТЫ Внимательно изучите теоретическую часть практической работы, основные и дополнительные источники и дайте развёрнутые ответы на контрольные вопросы: 1. Дайте определение производной функции, какая функция называется дифференцируемой, что означает дифференцирование функции. 2. Какие вы знаете правила дифференцирования. 3. Составьте таблицу производных. 4. В чём состоит геометрический смысл производной, приведите примеры. 5. В чём состоит физический смысл производной, приведите примеры.  

 

Основные источники:

1. Григорьев С.Г., Иволгина С.В. «Математика»: учебник для студ. образоват. учреждений сред.проф. образования под редакцией В.А. Гусева. – 10-е изд., стер. – М.: Издательский центр «Академия», 2018.

Дополнительные источники:

2. Богомолов Н.В., Самойленко П.И. «Математика» учебник для средних спец. учебных заведений -5 изд., переработанное и доп. – М.: издательство Юрайт, 2015.

3. Богомолов Н.В. практические занятия по математике: учебное пособие для СПО / Н.В. Богомолов. – 11-е изд., перераб. И доп. –М.: издательство Юрайт, 2015.

4. Федеральное хранилище Единой коллекции цифровых образовательных ресурсов [Электронный ресурс] / Национальный фонд подготовки кадров – Электрон.дан. – Режим доступа: https://school-collection.edu.ru/catalog/– Загл. с экрана;

5. Единое окно доступа к образовательным ресурсам [Электронный ресурс]: каталог образовательных Интернет - ресурсов/ ФГУ ГНИИ ИТТ «Информика». – Электрон.дан. – Режим доступа: https://window.edu.ru/– Загл. с экрана



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-07-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: