Особенности жизненного цикла различных групп




Генетический материал внутри вирусных частиц и способ его репликации, значительно отличается у различных вирусов.

· ДНК-содержащие вирусы. Репликация генома у большинства ДНК-содержащих вирусов происходит в клеточном ядре. Если клетка имеет соответствующий рецептор на своей поверхности, эти вирусы проникают в клетку либо путём непосредственного слияния с клеточной мембраной (напр. герпесвирусы), либо — что бывает чаще — путём рецептор-зависимого эндоцитоза. Большинство ДНК-содержащих вирусов полностью полагаются на синтетический аппарат клетки-хозяина для производства их ДНК и РНК, а также последующего процессинга РНК. Однако вирусы с крупными геномами (например, поксвирусы) могут сами кодировать большую часть необходимых для этого белков. Геному вируса эукариот необходимо преодолеть ядерную мембрану для того, чтобы получить доступ к ферментам, синтезирующим ДНК и РНК, в случае же бактерифагов ему достаточно просто проникнуть в клетку[104][105].

· РНК-содержащие вирусы. Репликация таких вирусов обычно происходит в цитоплазме. РНК-содержащие вирусы можно подразделить на 4 группы в зависимости от способа их репликации. Механизм репликации определяется тем, является ли геном вируса одноцепочечным или двухцепочечным, вторым важным фактором в случае одноцепочечного генома является его полярность (может ли он непосредственно служить матрицей для синтеза белка рибосомами). Все РНК-вирусы используют собственную РНК-репликазу для копирования своих геномов[106].

· Вирусы, использующие обратную транскрипцию. Эти вирусы содержат одноцепочечную РНК (Retroviridae, Metaviridae, Pseudoviridae) или двухцепочечную ДНК (Caulimoviridae и Hepadnaviridae). РНК-содержащие вирусы, способные к обратной транскрипции (ретровирусы, например, ВИЧ), используют ДНК-копию генома как промежуточную молекулу при репликации, а содержащие ДНК (параретровирусы, например, вирус гепатита B) — РНК[107]. В обоих случаях используется обратная транскриптаза, или РНК-зависимая ДНК-полимераза. Ретровирусы встраивают ДНК, образующуюся в процессе обратной транскрипции, в геном хозяина, такое состояние вируса называется провирусом. Параретровирусы же этого не делают, хотя встроенные копии их генома могут давать начало инфекционным вирусам, особенно у растений[108]. Вирусы, использующие обратную транскрипцию, восприимчивы к противовирусным препаратам, ингибирующим обратную транскриптазу, в том числе к зидовудину и ламивудину.

Действие на клетки

Микрофотография, показывающая цитопатические эффекты, вызванные вирусом простого герпеса первого типа. Тест Папаниколау

Диапазон структурных и биохимических эффектов, оказываемых вирусом на инфицированную клетку, очень широк[109]. Они называются цитопатическими эффектами [110]. Большинство вирусных инфекций приводят к гибели клеток-хозяев. Причинами гибели могут быть лизис клетки, изменения клеточной мембраны и апоптоз[111]. Часто причиной гибели клетки является подавление её нормальной активности белками вируса, не все из которых входят в состав вирусной частицы[112].

Некоторые вирусы не вызывают никаких видимых изменений в поражённой клетке. Клетки, в которых вирус находится в латентном состоянии и неактивен, имеют мало признаков инфекции и нормально функционируют[113]. Это является причиной хронических инфекций, и вирус при них может никак себя не проявлять многие месяцы или годы. Так часто бывает, например, с вирусом герпеса[114][115]. Некоторые вирусы, например вирус Эпштейна — Барр, могут вызывать быстрое размножение клеток без появления злокачественности[116], в то время как другие, такие как папилломавирусы, могут вызвать рак[117].

Диапазон хозяев

Вирусы, несомненно, являются самыми многочисленными биологическими объектами на Земле, и по этому показателю они превосходят все организмы, вместе взятые[118]. Они поражают все формы клеточных организмов, включая животных, растения, бактерии и грибы[7]. Тем не менее различные типы вирусов могут поражать только ограниченный круг хозяев, многие вирусы видоспецифичны. Некоторые, как, например, вирус оспы, могут поражать только один вид — людей[119], в подобных случаях говорят, что вирус имеет узкий диапазон хозяев. Напротив, вирус бешенства может поражать различные виды млекопитающих, то есть он имеет широкий диапазон хозяев[120]. Вирусы растений безвредны для животных, а большинство вирусов животных безопасны для человека[121]. Диапазон хозяев некоторых бактериофагов ограничивается одним штаммом бактерий, и они могут использоваться для определения штаммов, вызывающих вспышки инфекционных заболеваний методом фагового типирования[122].

Распространение

Вирусы распространяются многими способами: вирусы растений часто передаются от растения к растению насекомыми, питающимися растительными соками, к примеру, тлями; вирусы животных могут распространяться кровососущими насекомыми, такие организмы известны как переносчики. Вирус гриппа распространяется воздушно-капельным путём при кашле и чихании. Норовирус и ротавирус, обычно вызывающие вирусные гастроэнтериты, передаются фекально-оральным путём при контакте с заражённой пищей или водой. ВИЧ является одним из нескольких вирусов, передающихся половым путём и при переливании заражённой крови. Каждый вирус имеет определённую специфичность к хозяевам, определяющуюся типами клеток, которые он может инфицировать. Круг хозяев может быть узок или, если вирус поражает многие виды, широк[123].

Классификация

В таксономии живой природы вирусы выделяют в отдельный таксон, образующий в классификации Systema Naturae 2000 вместе с доменами Bacteria, Archaea и Eukaryota корневой таксон Biota [124]. В течение XX века в систематике выдвигались предложения о создании выделенного таксона для неклеточных форм жизни (Aphanobionta Novak, 1930[125]; надцарство Acytota Jeffrey, 1971[126]; Acellularia [127]), однако такие предложения не были кодифицированы[128].

Главной задачей классификации является описание разнообразия вирусов и группировка их на основании общих свойств. В 1962 году Андре Львов, Роберт Хорн и Пауль Турнье были первыми, кто разработал основные принципы классификации вирусов на основании Линнеевской иерархической системы[129]. Основными таксонами в этой системе являются отдел, класс, порядок, семейство, род и вид. Вирусы были разделены на группы по общим свойствам (но не таковым у их хозяев) и типу нуклеиновых кислот в геномах[130]. Позднее был создан Международный комитет по таксономии вирусов. Однако в таксономии вирусов не применяются понятия «царство», «отдел» и «класс», поскольку их малый размер генома и высокая частота мутаций затрудняет выяснение родства групп старше порядка. По существу, классификация вирусов по Балтимору является дополнением более традиционной классификации.

Систематику и таксономию вирусов в настоящий момент кодифицирует и поддерживает Международный комитет по таксономии вирусов (International Committee on Taxonomy of Viruses, ICTV), поддерживающий также и таксономическую базу The Universal Virus Database ICTVdB.

Классификация ICTV

Международный комитет по таксономии вирусов разработал современную классификацию вирусов и выделил основные свойства вирусов, имеющие больший вес для классификации с сохранением единообразия семейств.

Была разработана объединённая таксономия (универсальная система для классификации вирусов). Седьмой отчёт ICTV закрепил для первых пор понятие о виде вируса как о низшем таксоне в иерархии вирусов[131][комм. 3]. Однако к настоящему моменту была изучена лишь небольшая часть от общего разнообразия вирусов, анализ образцов вирусов из человеческого организма выявил, что около 20 % последовательностей вирусных нуклеиновых кислот ещё не было рассмотрено ранее, а образцы из окружающей среды, например, морской воды и океанского дна, показали, что подавляющее большинство последовательностей являются совершенно новыми[132].

Основными таксономическими единицами являются[133]:

Порядок (-virales)

Семейство (-viridae)

Подсемейство (-virinae)

Род (-virus)

Вид (-virus)

Современная классификация ICTV (2017 года) включает 9 порядков вирусов: Bunyavirales, Caudovirales, Herpesvirales, Ligamenvirales, Mononegavirales, Nidovirales, Ortervirales, Picornavirales и Tymovirales [1]. Существование ещё одного порядка (Megavirales [134]) только предположено. Классификация не выделяет подвиды, штаммы и изоляты. Всего насчитывается 9 порядков, 127 семейств, 44 подсемейства, 782 род, 4686 видов[135][комм. 4] и свыше 3000 ещё не классифицированных вирусов[136].

Классификация по Балтимору

Группы вирусов по Балтимору. Условные обозначения: оц — одноцепочечная, дц — двуцепочечная, РТ — ретровирус или ретроидный вирус

Лауреат Нобелевской премии биолог Дейвид Балтимор разработал классификацию вирусов по Балтимору[33][137]. Классификация ICTV в настоящее время объединяется с классификацией по Балтимору, составляя современную систему классификации вирусов[138][139].

Классификация вирусов по Балтимору основывается на механизме образования мРНК. Вирусы должны синтезировать мРНК из собственных геномов для образования белков и репликации своей нуклеиновой кислоты, однако каждое семейство вирусов имеет собственный механизм осуществления этого. Вирусные геномы могут быть одноцепоченые (оц) или двухцепочечные (дц), ДНК- или РНК-содержащие, могут использовать или не использовать обратную транскриптазу. Кроме того, одноцепочечные РНК-вирусы могут иметь положительную (+) или отрицательную (-) цепь РНК в составе своего генома.

Эта система включает в себя семь основных групп[140][141]:

· (I) Вирусы, содержащие двуцепочечную ДНК и не имеющие РНК-стадии (например, герпесвирусы, поксвирусы, паповавирусы, мимивирус).

· (II) Вирусы, содержащие одноцепочечную молекулу ДНК (например, парвовирусы). В этом случае ДНК всегда положительной полярности.

· (III) Вирусы, содержащие двуцепочечную РНК (например, ротавирусы).

· (IV) Вирусы, содержащие одноцепочечную молекулу РНК положительной полярности (например, пикорнавирусы, флавивирусы).

· (V) Вирусы, содержащие одноцепочечную молекулу РНК негативной или двойной полярности (например, ортомиксовирусы, филовирусы).

· (VI) Вирусы, содержащие одноцепочечную молекулу РНК положительной полярности и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретровирусы (например, ВИЧ).

· (VII) Вирусы, содержащие частично двуцепочечную, частично одноцепочечную ДНК[142][143] и имеющие в своём жизненном цикле стадию синтеза ДНК на матрице РНК, ретроидные вирусы (например, вирус гепатита B)[144].

Дальнейшее деление производится на основе таких признаков как структура генома (наличие сегментов, кольцевая или линейная молекула), генетическое сходство с другими вирусами, наличие липидной оболочки, таксономическая принадлежность организма-хозяина и так далее.

Роль в заболеваниях человека

Основные вирусные инфекциичеловека и их возбудители

Примерами наиболее известных вирусных заболеваний человека могут служить простуда (она может иметь и бактериальную этиологию), грипп, ветряная оспа и простой герпес. Многие серьёзные болезни, например, геморрагическая лихорадка Эбола, СПИД, птичий грипп и тяжёлый острый респираторный синдром вызываются вирусами. Относительная способность вируса вызывать заболевание характеризуется термином вирулентность. Некоторые заболевания исследуются на наличие вирусов в числе вызывающих агентов, например, возможна связь между человеческим герпесвирусом 6 типа и нейрологическими заболеваниями, такими как рассеянный склероз и синдром хронической усталости[145]. Идут споры по поводу того, что борнавирус, ранее считавшийся возбудителем нейрологических заболеваний у лошадей, возможно, вызывает психические расстройства у людей[146].

Вирусы имеют различные механизмы, вызывающие болезнь у хозяина, и эти механизмы сильно зависят от вида. Такой механизм на клеточном уровне включает, прежде всего, лизис клеток, приводящий к их смерти. У многоклеточных организмов, при гибели большого числа клеток, начинает страдать организм в целом. Хотя вирусы подрывают нормальный гомеостаз, приводя к заболеванию, они могут существовать внутри организма и относительно безвредно. В качестве примера можно привести способность вируса простого герпеса первого типа пребывать в состоянии покоя внутри тела человека. Такое состояние называется латентностью[147]. Оно характерно для вирусов герпеса, в том числе вируса Эпштейна — Барр, вызывающего инфекционный мононуклеоз, а также вируса, вызывающего ветрянку и опоясывающий лишай. Большинство людей переболели по крайней мере одним из этих типов вируса герпеса[148]. Однако такие латентные вирусы могут и принести пользу, поскольку присутствие этих вирусов может вызвать иммунный ответ против бактериальных патогенов, например, чумной палочки (Yersinia pestis)[149].

Некоторые вирусы могут вызывать пожизненные или хронические инфекции, при которых вирус продолжает размножаться в теле организма, несмотря на его защитные механизмы[150]. Так происходит, например, при инфекциях, вызванных вирусами гепатита B и C. Хронически больные люди известны как носители, поскольку они выступают в роли резервуара для заразного вируса[151]. Если в популяции имеется высокая доля носителей, то в этом случае говорят об эпидемии[152].

Эпидемиология

Вирусная эпидемиология является частью медицинской науки, изучающей передачу и контроль вирусных инфекций среди людей. Передача вирусов может осуществляться вертикально, то есть от матери к ребёнку, или горизонтально, то есть от человека к человеку. Примерами вертикальной передачи могут служить вирус гепатита B и ВИЧ, при которых малыш рождается уже заражённым[153]. Другим, более редким, примером служит вирус ветрянки и опоясывающего лишая, который, хотя и вызывает относительно слабые инфекции среди взрослых людей, может оказаться смертельным для эмбрионов и новорождённых малышей[154].

Горизонтальная передача является наиболее распространённым механизмом распространения вируса в популяции. Передача может осуществляться: при передаче жидкостей организма при половом акте, например, у ВИЧ; через кровь при переливании заражённой крови или пользовании грязным шприцом, например, у вируса гепатита C; передаче слюны губами, например, у вируса Эпштейна — Барр; проглатывании заражённой воды или пищи, например, у норовируса; при вдыхании воздуха, в котором находятся вирионы, например, вирус гриппа; насекомыми, например, комарами, повреждающими кожу хозяина, например, лихорадка денге. Скорость передачи вирусной инфекции зависит от нескольких факторов, к которым относят плотность популяции, количество чувствительных людей (то есть не имеющих иммунитета)[155], качество здравоохранения и погоду[156].

Эпидемиология используется, чтобы приостановить распространение инфекции в популяции во время вспышки вирусного заболевания[157]. Предпринимаются контрольные меры, основанные на знании того, как распространяется вирус. Важно найти источник (или источники) вспышки и идентифицировать вирус. Когда вирус определён, бывает возможным остановить инфекцию при помощи вакцин. Если вакцины недоступны, могут быть эффективными санация и дезинфекция. Часто заражённых людей изолируют от остального общества, то есть вирус помещается в карантин[158]. Чтобы взять под контроль вспышки ящура в Великобритании в 2001 году, были зарезаны тысячи коров[159]. У большинства инфекций человека и животных есть инкубационный период, в течение которого не проявляется никаких симптомов инфекции[160]. Инкубационный период вирусных заболеваний может длиться от нескольких дней до недель[161]. Часто перекрывающийся с ним, но в основном следующий после инкубационного периода — период передачи инфекции, когда заражённый человек или животное является заразным и может заразить других людей или животных[161]. Этот период также известен для многих инфекций, и знание длины обоих периодов является важным для контролирования вспышек[162]. Если вспышка приводит к необычно высокому числу случаев заболевания в популяции или регионе, то она называется эпидемией. Если вспышки имеют широкое распространение, то говорят о пандемии[163].

Эпидемии и пандемии

Просвечивающая электронная микроскопия воссозданного вируса испанского гриппа

Численность коренного населения Америки была сильно уменьшена заразными заболеваниями, в частности, оспой, завезёнными в Америку европейскими колонизаторами. По некоторым оценкам, иноземными болезнями после прибытия Колумба в Америку, было убито около 70 % от всего коренного населения. Урон, нанесённый этими болезнями аборигенам, помог европейцам вытеснить и покорить их[164].

Пандемия — это эпидемия всемирного масштаба. Эпидемия испанского гриппа 1918 года, продолжавшаяся до 1919 года, относится к 5 категории пандемий вируса гриппа. Она была вызвана чрезвычайно агрессивным и смертоносным вирусом гриппа A. Его жертвами часто становились здоровые взрослые люди, в отличие от большинства вспышек гриппа, которые поражали в основном детей и подростков, людей старшего поколения и других ослабленных людей[165]. По старым оценкам, испанский грипп унёс 40—50 млн. жизней[166], а по современным оценкам эта цифра приближается к 100 млн, то есть 5 % тогдашнего населения Земли[167].

Большинство исследователей полагают, что ВИЧ появился в Африке южнее Сахары в течение XX столетия[168]. Сейчас эпидемия СПИД имеет масштаб пандемии. По оценкам, сейчас 38,6 миллионов людей на земле заражено ВИЧ[169]. По оценкам Объединённой программы Организации Объединённых Наций по ВИЧ/СПИД и Всемирной Организации Здравоохранения, от СПИДа (последней стадии ВИЧ-инфекции) умерло более 25 миллионов человек с момента регистрации первого случая заболевания 5 июня 1981 года, что делает его одной из наиболее разрушительных эпидемий за всю документированную историю[170]. В 2007 году было зарегистрировано 2,7 млн случаев заражения ВИЧ и 2 млн смертей от связанных с ВИЧ заболеваний[171].

Несколько высоколетальных вирусных патогенов относятся к семейству филовирусов (Filoviridae). Филовирусы представляют собой филаментовидные вирусы, которые вызывают геморрагическую лихорадку, к ним также относят возбудителя геморрагической лихорадки Эбола и марбургский вирус. Марбургский вирус привлёк широкое внимание прессы в апреле 2005 года из-за вспышки в Анголе. Продолжавшаяся с октября 2004 года и вплоть до 2005 года, эта вспышка вошла в историю как наиболее ужасная эпидемия любой геморрагической лихорадки[172].

Марбургский вирус

Злокачественные опухоли

Вирусы могут вызывать злокачественные новообразования (в частности, гепатоцеллюлярную карциному или саркому Капоши) у человека и других видов, хотя он возникает лишь у небольшой части инфицированных. Опухолевородные вирусы относятся к различным семействам; они включают и РНК-, и ДНК-содержащие вирусы, поэтому единого типа «онковирус» не существует (устаревший термин, первоначально применявшийся для быстро трансформирующихся ретровирусов). Развитие рака определяется множеством факторов, такими как иммунитет хозяина[173] и его мутации[174]. К вирусам, способным вызывать рак у человека, относят некоторых представителей папилломавируса человека, вируса гепатита B и C, вируса Эпштейна — Барр, герпесвируса саркомы Капоши и человеческого T-лимфотропного вируса. Совсем недавно открытым вирусом рака человека является полиомавирус (полиомавирус клеток Меркеля), который в большинстве случаев вызывает редкую форму рака кожи, называемого карциномой клеток Меркеля[175]. Вирусы гепатита могут вызвать хроническую вирусную инфекцию, которая приводит к раку печени[176][177]. Заражение человеческим T-лимфотрофным вирусом может привести к тропическому спастическому параперезу и зрелой лейкемииТ-клеток[178]. Человеческие папилломавирусы могут вызывать рак шейки матки, кожи, ануса и полового члена[179]. Из герпесвирусов герпесвирус саркомы Капоши вызывает саркому Капоши и лимфому полости тела, вирус Эпштейна — Барр — лимфому Беркитта, лимфогранулематоз, нарушения B-лимфопролиферации и назофарингеальную карциному[180]. Полиомавирус клеток Меркеля близок к вирусу SV40 и полиомавирусам мышей, которые более 50 лет использовались как животные модели для изучения вирусного рака[181].

Защитная реакция хозяина

Два ротавируса: правый покрыт антителами, останавливающими его прикрепление к клеткам и заражение их

Первой защитной линией организма против вируса является врождённый иммунитет. Он включает клетки и другие механизмы, обеспечивающие неспецифическую защиту. Это значит, что клетки врождённого иммунитета распознают и реагируют на патогены общими способами, одинаково по отношению ко всем патогенам, но, в отличие от приобретённого иммунитета, врождённый иммунитет не даёт продолжительной и надёжной защиты хозяину[182].

Важным врождённым способом защиты организма эукариот против вирусов является РНК-интерференция[183]. Стратегия репликации многих вирусов предполагает наличие стадии двуцепочечной РНК. Для борьбы с подобными вирусами, клетка имеет систему неспецифической деградации одно- и двуцепочечных РНК. Когда подобный вирус попадает в клетку и освобождает геномную РНК в цитоплазму, белковый комплекс Dicer связывает и разрывает вирусную РНК на короткие фрагменты. Активируется биохимический путь, называемый RISC, который разрушает вирусную РНК, и препятствует размножению вируса. Ротавирусам удаётся избежать РНК-интерференции, сохраняя часть капсида даже внутри клетки и выпуская новообразованные мРНК через поры во внутреннем капсиде. Геномная двуцепочечная РНК же остаётся внутри него[184][185].

Когда система приобретённого иммунитета у позвоночных сталкивается с вирусом, она образует специфические антитела, присоединяющиеся к вирусу и часто делающие его неопасным. Это называется гуморальным иммунитетом. Наиболее важными являются два типа антител. Первый, называемый IgM, обладает высокой эффективностью в нейтрализации вирусов, но образуется клетками иммунной системы лишь в течение нескольких недель. Синтез второго — IgG — продолжается неопределённо долго. Присутствие IgM в крови хозяина говорит о наличии острой инфекции, в то время IgG свидетельствует об инфекции, перенесённой в прошлом[186]. Именно количество IgG измеряется при тестах на иммунитет[187]. Антитела могут продолжать оставаться эффективным защитным механизмом даже тогда, когда вирусу удаётся проникнуть в клетку. Клеточный белок TRIM21 может прикреплять антитела к поверхности вирусных частиц. Это вызывает последующее разрушение вирусной частицы ферментами клеточной протеосомной системы[188].

Второй защитный механизм позвоночных против вирусов называется клеточным иммунитетом и включает иммунные клетки, известные как T-лимфоциты. Клетки тела постоянно несут короткие фрагменты собственных белков на своих поверхностях, и, если Т-лимфоциты распознают здесь подозрительные вирусные фрагменты, клетка-хозяин разрушается клетками, называемыми Т-киллерами, и начинается образование специфичных к вирусу T-лимфоцитов. Такие клетки, как макрофаги, специализируются на презентации антигенов[189]. Важной защитной реакцией хозяина является продукция интерферона. Интерферон — это гормон, образуемый организмом в ответ на присутствие вируса. Его роль в иммунитете — комплексная, в конце концов он останавливает вирус, прекращая образование новых вирусов поражёнными клетками, убивая их и их близких соседей[190].

Не против всех вирусов образуется такой защитный иммунный ответ. ВИЧ удаётся избежать иммунного ответа, постоянно меняя последовательность аминокислот поверхностных белков вириона. Такие устойчивые вирусы уходят от иммунной системы, изолируясь от иммунных клеток, блокируя презентацию антигенов, благодаря устойчивости к цитокинам, уклоняясь от естественных киллеров, останавливая апоптоз клеток-хозяев, а также за счёт антигенной изменчивости[191]. Другие вирусы, называемые нейротропными вирусами, распространяются среди нервных клеток, то есть там, где иммунная система не в состоянии добраться до них.

Профилактика и лечение

Так как вирусы используют для размножения естественные метаболические пути клеток-хозяев, их сложно уничтожить без применения препаратов, токсичных для самих клеток-хозяев. Наиболее эффективными медицинскими мерами против вирусных инфекций являются вакцинации, создающие иммунитет к инфекции, и противовирусные препараты, избирательно ингибирующие репликацию вирусов.

Вакцины

Вакцинация представляет собой дешёвый и эффективный способ предотвращения вирусных инфекций. Вакцины для предотвращения вирусных инфекций применялись ещё задолго до открытия самих вирусов. Их применение вызвано тяжёлым перенесением и смертностью от вирусных инфекций, таких как полиомиелит, корь, свинка и краснуха, поэтому лучше сделать прививку, чем переболеть[192]. С помощью вакцинации оспа была искоренена[193]. С помощью вакцин можно предотвратить более 30 вирусных инфекций у человека[194], а ещё больше вакцин используется для предотвращения вирусных заболеваний животных[195]. Вакцины могут включать ослабленные и убитые вирусы, а также вирусные белки (антигены)[196]. Живые вакцины содержат ослабленные формы вирусов, которые не вызывают болезни, но тем не менее вызывают иммунный ответ. Такие вирусы называются аттенуированными. Живые вакцины могут быть опасны для людей со слабым иммунитетом (то есть имеющих иммунодефицит), так как даже ослабленный вирус у них может вызвать исходное заболевание[197]. Для производства т. н. субъединичных вакцин используются биотехнологии и генная инженерия. В таких вакцинах используются только капсидные белки вирусов. Примером такой вакцины может служить вакцина против вируса гепатита B[198]. Субъединичные вакцины безвредны для людей с иммунодефицитом, так как они не могут вызвать заболевание[199]. Вакцина против вируса жёлтой лихорадки, содержащая ослабленный штамм 17D, пожалуй, является наиболее эффективной и безопасной из когда-либо созданных вакцин[200].

Противовирусные препараты

Гуанозин

Нуклеозидный аналоггуанозина — ацикловир

Противовирусные препараты часто представляют собой аналоги нуклеозидов. Они встраиваются в геном вируса в ходе репликации, и на этом жизненный цикл вируса останавливается, поскольку новосинтезированная ДНК неактивна. Это вызвано тем, что у аналогов отсутствуют гидроксильные группы, которые вместе с атомами фосфора соединяются и формируют жёсткий «остов» молекулы ДНК. Это называется цепной терминацией ДНК[201]. Примеры аналогов нуклеозидов — ацикловир, применяющийся против инфекций, вызванных простым вирусом герпеса, и ламивудин (против ВИЧ и вируса гепатита B). Ацикловир — один из старейших и наиболее часто назначаемых противовирусных препаратов[202]. Другие используемые противовирусные препараты имеют мишенью различные стадии жизненного цикла вирусов. ВИЧу, чтобы стать полностью заразным, необходим протеолитический фермент, известный как ВИЧ-1 протеаза. На основании этого разработан большой класс препаратов, называемых протеазными ингибиторами, инактивирующими этот фермент.

Гепатит C вызывается РНК-содержащим вирусом. У 80 % заражённых людей инфекция имеет хронический характер, и без лечения они останутся заражёнными до конца своих дней. Однако сейчас используется эффективное лекарство, состоящее из нуклеозидного аналога рибавирина, комбинированного с интерфероном[203]. Для лечения хронических носителей гепатита B было разработано схожее лечение с использованием ламивудина[204].

Вирусные заболевания у других организмов

Вирусы поражают всю клеточную жизнь, но, несмотря на повсеместное распространение вирусов, каждый вид клеточных организмов имеет свой ряд поражающих вирусов, часто поражающих только этот вид[205]. Некоторые вирусы, называемые сателлитами, могут размножаться только в клетках, уже заражённых другим вирусом[51]. Вирусы являются важными патогенами домашнего скота. Вирусами вызываются такие заболевания, как ящур и «синий язык» (англ. bluetongue)[206]. Домашние животные, например, кошки, собаки и лошади, если их не вакцинировать, являются чувствительными к серьёзным вирусным болезням. Собачий парвовирус — это маленький ДНК-содержащий вирус, часто оказывается смертельным для щенков[207]. Как и все беспозвоночные, медоносная пчела чувствительна ко многим вирусным инфекциям[208]. Однако большинство вирусов безвредно сосуществуют со своими хозяевами, не подавая никаких признаков или симптомов болезни[6].

Вирусы беспозвоночных

На долю беспозвоночных приходится около 80 % всех известных видов животных, поэтому нет ничего удивительного в том, что они скрывают в себе огромное множество вирусов различных типов. Наиболее изучены вирусы, поражающие насекомых, но даже здесь доступная по ним информация носит фрагментарный характер. Впрочем, в последнее время были описаны вирусные заболевания и у других беспозвоночных. Эти вирусы остаются малоизученными, и некоторые сообщения об открытии следует принимать с осторожностью, пока вирусная природа этих болезней не будет окончательно доказана. Кроме того, необходимо также проверить инфективность изолированных вирусов по отношению к неинфицированным хозяевам того же вида, у кого эти вирусы были обнаружены[209].

В настоящее время выделено отдельное семейство вирусов, поражающих главным образом членистоногих, в особенности — насекомых, обитающих в водных и влажных средах: иридовирусы (лат. Iridoviridae от англ. Invertebrate iridescent viruses — «радужные вирусы беспозвоночных»; такой цвет наблюдается у образцов поражённых насекомых). Они представляют собой икосаэдрические частицы 120—180 нм в диаметре, содержащие внутреннюю липидную мембрану и геном в виде двуцепочечной ДНК, содержащей 130—210 тыс. пар нуклеотидов[210].

Другие вирусы, поражающие насекомых: семейство Baculoviridae, подсемейство Entomopoxvirinae семейства Poxviridae, род Densovirus семейства Parvoviridae, некоторые вирусы семейств Rhabdoviridae, Reoviridae, Picornaviridae [211].

Вирусы растений

Перцы, поражённые вирусом пятнистости

Существует много типов вирусов растений. Часто они вызывают снижение урожайности, принося большие убытки сельскому хозяйству, поэтому контроль таких вирусов очень важен с экономической точки зрения.[212]Вирусы растений часто распространяются от растения к растению организмами, известными как переносчики. Обычно ими выступают насекомые, но ими могут быть также грибы, черви-нематоды и одноклеточные организмы. Если контроль вируса растений признаётся экономически выгодным, например, в случае многолетних фруктовых деревьев, усилия направляются на устранение переносчиков или альтернативных хозяев, к примеру, сорняков[213]. Вирусы растений не могут поражать человека и других животных, так как они могут размножаться лишь в живых растительных клетках[214].

Растения имеют сложные и эффективные механизмы защиты от вирусов. Наиболее эффективным механизмом является наличие так называемого гена устойчивости (R от англ. resistance — «устойчивость»). Каждый R-ген отвечает за устойчивость к отдельному вирусу и вызывает гибель клеток, соседних с поражённой, что невооружённым глазом видно как большое пятно. Это останавливает развитие болезни вследствие остановки распространения вируса[215]. Другим эффективным методом является РНК-интерференция[216]. Будучи поражёнными вирусом, растения часто начинают вырабатывать природные противовирусные вещества, такие как салициловая кислота, оксид азота NO и активные формы кислорода[217].

Вирусы растений и созданные на их основе вирусоподобные частицы (VLPs) нашли применение в биотехнологиях и нанотехнологиях. Капсиды большинства вирусов растений имеют простую и устойчивую структуру, и вирусные частицы могут производиться в огромных количествах как поражённым растением, так и различными гетерологичными системами. Вирусы растений могут изменяться химически и генетически, заключая в оболочку инородные частицы, а также способны встраиваться в надмолекулярные структуры, что делает возможным их применение в биотехнологиях[218].

Для повышения достоверности результатов диагностики вирусологического статуса растений необходимо использовать как минимум два метода, причем, желательно, высокочувствительные — ИФА и ПЦР. Выявляемость вирусов повышается за счет использования гидроксипроизводного бензойной кислоты (ГПБК) в качестве эффективного антиоксиданта, учета биологических особенностей культур и условий окружающей среды[219].

Вирусы грибов

Вирусы грибов называются миковирусами. В настоящий момент вирусы выделены у 73 видов из 57 родов, относящихся к 5 классам[220], но, предположительно, в безвредном состоянии вирусы существуют у большинства грибов. В общем эти вирусы представляют собой круглые частицы 30—45 нм диаметром, состоящие из множества субъединиц единственного белка, сложенных вокруг генома, представленного двуцепочечной РНК. Как правило, вирусы грибов относительно безвредны. Некоторые грибные штаммы могут поражаться многими вирусами, но большинство миковирусов тесно связаны со своим единственным хозяином, от которого передаются его потомкам. Классификацией вирусов грибов сейчас занимается специально созданный комитет в составе ICTV[220]. В данный момент он признаёт 3 семейства вирусов грибов, а наиболее изученные миковирусы относятся к семейству Totiviridae [221]

Установлено, что антивирусная активность пенициллиновых грибов вызвана индукцией интерферона двухцепочечной РНК от вирусов, поражающих грибы[220].

Если же вирус, попадая в гриб, проявляет свою вирулентность, то реакция гриба на это может быть различной: снижение или повышение вирулентности у патогенных видов, дегенерация мицелия и плодовых тел, изменение окраски, подавление спороношения. Некапсидированные вирусные РНК передаются через анастомозы независимо от митохондрий.

Вирусные заболевания могут наносить ущерб грибоводческим предприятиям, например, вызывать побурение плодовых тел шампиньона, изменение окраски у зимнего опёнка, что снижает их коммерческую ценность. Вирусы, вызывающие гиповирулентность грибов-патогенов, могут использоваться для борьбы с заболеваниями растений[222][223].

Вирусы протистов

К вирусам протистов относят вирусы, поражающие одноклеточных эукариот, не включённых в царство животные, растения или грибы. Некоторые из известных на данный момент вирусов протистов[224]:

Многие вирусы простейших имеют необычно большие размеры. Например, геном Marseillevirus, вперв



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-02-02 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: