Вопрос 3. Обобщения теорем сложения и умножения




Теорема сложения вероятностей совместных событий

Определение 1. События А и В называют совместными, ес­ли в одном и том же испытании появление одного из них не исключает появления другого.

Для таких событий справедлива следующая теорема.

ТЕОРЕМА 5. Вероятность суммы совместных событий равна сумме их вероятностей без вероятности их произве­дения:

 

 

Из формулы (17.12) получается ряд следующих частных случаев.

1. Для независимых событий с учетом формулы (17.7)

 

 

2. Для зависимых событий с учетом формулы (17.5)

 

 

3. Для несовместных событий Р(АВ) = 0, и в этом случае имеем подтверждение теоремы.1 и формулы (17.3):

Пример 2. Вероятности поражения цели первым и вторым стрелками равны соответственно 0,8 и 0,9. Найти вероятность поражения цели при залпе.

Решение. Поскольку вероятности поражения цели стрел­ками (события А и В соответственно) не зависят от результатов стрельбы каждого из напарников, то эти события не­зависимы. Искомая вероятность рассчитывается по формуле (17.13):

 

 

Аналогичный результат можно было бы получить и с при­менением формулы (17.8). Пусть событие А — поражение цели, и — события, соответствующие промахам стрелков, тогда

 

Вопрос 4. Формула полной вероятности. Формулы Байеса

 

 

Пусть события В 1, В 2, …, Вп несовместны и образуют пол­ную группу, т.е., согласно теореме 2, выполняется ра­венство

 

 

Пусть также событие А может наступить при условии появле­ния одного из событий Вi, причем известны как вероятности P (Bi), так и условные вероятности PBi(A) (i = 1, 2,..., п). В таком случае формула для вероятности события А определя­ется следующей теоремой.

ТЕОРЕМА 6. Вероятность события А, появление которо­го возможно лишь при наступлении одного из несовместных событий Bi, образующих полную группу (i = 1, 2,...,п), рав­на сумме попарных произведений каждого из этих событий на соответствующую условную вероятность появления со­бытия А:

 

Пример 3. В двух урнах находятся белые и красные шары: в первой — 4 белых и 5 красных, во второй — 7 белых и 3 красных. Из второй урны наудачу взяли шар и переложили его в первую урну. Найти вероятность того, что наудачу взятый после этого из первой урны шар будет белым.

Решение. Перекладывание из второй урны в первую бело­го шара (событие В 1) и красного шара (событие В 2) образует полную группу независимых событий. Их вероятности соот­ветственно P(B 1 ) = 0,7 и Р(В2) = 0,3. Условные вероятнос­ти извлечения из первой урны белого шара (событие А) при добавлении туда белого или красного шара из второй урны соответственно равны РB1(А) = 0,5 и РB2(А) = 0,4. Искомая вероятность находится по формуле (17.14) при п = 2:

 

 

Формулы Байеса

 

Пусть события B 1, B 2,..., Вп несовместны и образуют пол­ную группу, а событие А может наступить при условии появле­ния одного из них. События Bi называют гипотезами, так как заранее неизвестно, какое из них наступит. Пусть произведено испытание и в результате появилось событие А. Тогда оказывается возможным определить условные вероятности гипотез Bi по следующим формулам:

 

 

Формулы (17.15) называются формулами Байеса, по имени их автора. Они позволяют оценить вероятность гипотезы Вi во всех испытаниях, где наступает событие А. Иными слова­ми, зная вероятность Р(Вi) до проведения испытания, мы мо­жем переоценить ее после проведения испытания, в результате которого появилось событие А.

Пример 5. Вероятность изготовления изделия с браком равна 0,08. После изготовления все изделия подвергаются проверке, в результате которой изделия без брака признаются годными с вероятностью 0,95, а изделия с браком — с вероятностью 0,06. Найти долю изделий, выпущенных после проверки, а так­же вероятность того, что выпущенное после проверки изделие окажется без брака.

Решение. Независимые события (гипотезы), образующие полную группу, — это B 1 (изделие без брака) и В 2 (изделие с браком). Пусть событие А заключается в том, что при проверке изделие признается годным. Ответ на первый вопрос задачи дает формула (17.14):

 

 

Следовательно, после проверки признаются годными около 88% всех изготовленных изделий.

Ответ на второй вопрос задачи дает формула Байеса (17.15) при п = 2 и i = 1:

 

 

Иными словами, среди изделий, прошедших проверку, содер­жится 99, 5% изделий без брака.

Пример 6. В среднем из каждых 100 клиентов отделения бан­ка 60 обслуживаются первым операционистом и 40 — вторым операционистом. Вероятность того, что клиент будет обслужен без помощи заведующего отделением, только самим операци­онистом, составляет 0,9 и 0,75 соответственно для первого и второго служащих банка. Найти вероятность полного обслу­живания клиента первым операционистом.

Решение. Вероятность того, что клиент попадет к перво­му операционисту (событие B 1), составляет 0,6, ко второму — 0,4 (событие В 2). Искомая вероятность полного обслуживания клиента первым операционистом (событие А) определяется по формулам (17.14) и (17.15):

 

 

Иными словами, 64% клиентов, попавших на обслуживание к первому операционисту, будут обслужены им полностью.

 

Вопрос 5. Повторение независимых испытаний. Формула Бернулли

Определение 1. Если при проведении нескольких испытаний вероятность события А в каждом испытании не зависит от исходов других событий, то эти испытания называются неза­висимыми относительно события А.

Будем рассматривать только такие независимые испыта­ния, в которых событие А имеет одинаковую вероятность. Пусть производится п независимых испытаний, в каждом из которых событие А может появиться с вероятностью р. Тог­да вероятность противоположного события — ненаступления события А — также постоянна в каждом испытании и равна q = 1 - p. В теории вероятностей представляет особый интерес случай, когда в п испытаниях событие А осуществится k раз и не осуществится п - k раз.

Вероятность этого сложного события, состоящего из п ис­пытаний, определяется формулой Бернулли

 

Пример 1. Монету бросают 6 раз. Найти вероятности того, что герб выпадет: 1) 2 раза, 2) не менее двух раз.

Решение. Вероятности выпадения любой из двух сторон монеты одинаковы, т.е. р = q = 0,5. 1) В этом случае п = 6, k = 2. Отсюда согласно формуле (17.16) получаем

 

Пример 2. Вероятность покупки бракованного комплекта по­суды равна 0,1. Найти вероятность того, что из 7 купленных комплектов 5 будет без брака.

Решение. Вероятность покупки комплекта без брака р = 0,9, q = 0,1 — это дано по условию задачи. Тогда искомая вероятность находится по формуле (17.16):

 

 

Пример 3. Контрольный тест состоит из 4 вопросов. На каж­дый вопрос предлагается 4 варианта ответа, среди которых только один правильный. Найти вероятность правильного от­вета на два, три и четыре вопроса теста для неподготовленного человека (выбор ответа наудачу).

Решение. Искомые значения вероятности находятся по формуле Бернулли (17.16) с учетом того, что вероятность со­бытия А (правильный ответ) в каждом испытании (выбор от­вета на вопрос теста) равна 0,25, а q = 0,75. Отсюда получаем:

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-11-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: