Метод Гаусса (метод последовательного исключения неизвестных).




Сущность метода Гаусса заключается в том, что с помощью элементарных преобразований расширенная матрица системы приводится к ступенчатому виду (производя при этом элементарные преобразования только над строками матрицы). Причем выделяют две стадии метода Гаусса: прямой ход, когда мы «обнуляем» элементы под «диагональными» элементами, и обратный ход, когда мы «обнуляем» элементы над «диагональными». Можно сразу обнулять элементы столбцов как ниже главной диагонали, так и выше. В этом случае «обратного хода» не требуется. Такая модификация метода называется метод Гаусса-Жордана. Если ранг матрицы r меньше числа неизвестных n, то необходимо выделить базисный минор матрицы системы. Тогда столбцы, из которых выделяется базисный минор, будут определять базисные переменные, а оставшиеся – свободные переменные. Рассмотрим алгоритм применения метода Гаусса на простых примерах.

 

Примеры решения задач

Пример 1. Даны две матрицы A и B. Найти: AB

А= , В = .

Решение. Поскольку матрица А размера 2´3, матрица В размера 3´3, то произведение АВ = С существует и элементы матрицы С равны
с11 = 1×1 +2×2 + 1×3 = 8, с21 = 3×1 + 1×2 + 0×3 = 5, с12 = 1×2 + 2×0 + 1×5 = 7,

с22 =3×2 + 1×0 + 0×5 = 6, с13 = 1×3 + 2×1 + 1×4 = 9, с23 = 3×3 + 1×1 + 0×4 = 10.

AB = , а произведение B A не существует.

Пример 2.. Найти АВТ, если А = , В = (50 70 130).

Решение. АВT = .

Пример 3. Даны две матрицы A и B. Найти: а)AB; б)BA; в)3АВ-2А

A = , B = .

Решение:

а) Произведение АВ имеет смысл, так как число столбцов матрицы А равно числу строк матрицы В. Находим матрицу С=АВ, элементы которой определяются по формуле cij =ai1b1j+. ai2b2j+ ai3b3j+. …+ ainbnj. Имеем:

AB= =. =

б) Вычислим BA= . ==. =

Очевидно, что; AB BA

в)Вычислим 3АВ-2А, используя полученный результат для АВ из пункта а)

3АВ-2А = 3 - 2 = - =

Пример 4. Найти BACT + BADT, если A = , B= (10 15 23),

C= (40 35 24 16), D= (5 3 2 2).

Решение.

BА=(10 15 23) = =

=(95 40 92 129).

B А C T = (95 40 92 129) .

BАD T = (95 40 92 129) .

Итак, BАC T + BАD T = 9472 + 1037 = 10509

Пример 5. Найти B3, если

Решение. Сначала найдем В2=В B= = .

В3=В В2 = = .

Легко убедиться, что В32 В = = , что подтверждает правильность сочетательного закона при умножении матриц.

Пример 6. Для данного определителя :

1) найти миноры и алгебраические дополнения элементов a12 и a32.

2) Вычислить определитель: а) разложив его по элементам 1-ой строки; б) разложив его по элементам 2-го столбца; в) получив предварительно нули в 1-ой строке.

 

=

Решение:

1). Находим миноры к элементам a12 и a32 по правилу треугольников:

M12 = = -8-16+6+12+4-16=-18,

M32 = =-12+12=12-8=-20.

Алгебраические дополнения элементов a12 и a32 соответственно равны:

A12 =(-1)1+2 M12 –(-18)=18,

A32 =(-1)3+2 M32 –(-20)=20,

2) а). Вычислим определитель, разложив его по элементам первой строки:

= a1 1 A11j + a12 A12 + a13 A13 + a14 A14 =-3 - 2 + 1 - +0 -= -3(8 + 2 + 4 – 4) - -2(-8 – 16 + 6 + 12 +4 + 16) + (16 – 12 – 4 + 32) = 38.

б) Вычислим определитель, разложив его по элементам второго столбца:

= a2 1 A21 + a22 A22 + a23 A23 + a24 A24 =-2 - 2 +

+0 +1 = -2(-8 + 6 - 16 +12 +4 - 16) – 2(12+ 6 – 6 – 16) + (-6 + 16 - - 12 – 4)=38.

в) Вычислим определитель , получив предварительно нули в первой строке. Используем свойство определителей: определитель не изменится, если ко всем элементам какой-либо строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же произвольное число. Умножим третий столбец определителя на 3 и прибавим к первому (3C3+C1).Полученный столбец запишем вместо первого. Затем третий столбец умножим на (-2) и прибавим ко второму (-2C3+C2.), и полученный столбец запишем вместо второго. Тогда в первой строке все элементы, кроме одного, будут нулями. Разложим полученный таким образом определитель по элементам первой строки и вычислим его:

= = = = 1* .= = = = -(-56+18)=38

Пример7. Не вычисляя определителя , показать, что он равен нулю.

Решение. Вычтем из второй строки первую, получим определитель , равный исходному. Если из третьей строки также вычесть первую, то получится определитель , в котором две строки пропорциональны. Такой определитель равен нулю.

Пример 8. Вычислить определитель D =

а) разложив его по элементам второго столбца,

б) по правилу треугольников.

Решение.

а) Разложим определитель по элементам второго столбца:

D = a12A12 + a22A22+a32A32=

= .

б) По правилу треугольников:

D = 10+8+9-60+12+1 = -20.

Пример 9. Вычислить определитель А, в котором все элементы по одну сторону от главной диагонали равны нулю.

А = ,

Решение. Разложим определитель А по первой строке:

A = a11 A11 = .

Определитель, стоящий справа, можно снова разложить по первой строке, тогда получим:

A = .

И так далее. После n шагов придем к равенству A = а11 а22... ann.

Пример 10. Вычислить определитель .

Решение. Если к каждой строке определителя, начиная со второй, прибавить первую строку, то получится определитель, в котором все элементы, находящиеся ниже главной диагонали, будут равны нулю. А именно, получим определитель: , равный исходному.

Рассуждая, как в предыдущем примере найдем, что он равен произведению элементов главной диагонали, т.е. n!. Способ, с помощью которого вычислен данный определитель, называется способом приведения к треугольному виду.

Пример11. Для матрицы А = найти обратную.

Решение. Находим сначала детерминант матрицы А
D = det А = = 27 ¹ 0, значит, обратная матрица существует и мы ее можем найти по формуле: А-1 = 1/D , где Аi j (i,j=1,2,3) - алгебраические дополнения элементов аi j исходной матрицы. Имеем:

откуда

А-1 = .

Проверим равенство АА-1

 

Пример12. Методом элементарных преобразований найти обратную матрицу для матрицы: А= .

Решение. Приписываем к исходной матрице справа единичную матрицу того же порядка: . С помощью элементарных преобразований столбцов приведем левую “половину” к единичной, совершая одновременно точно такие же преобразования над правой матрицей.
Для этого поменяем местами первый и второй столбцы: ~ . К третьему столбцу прибавим первый, а ко второму - первый, умноженный на -2: . Из первого столбца вычтем удвоенный второй, а из третьего - умноженный на 6 второй: . Прибавим третий столбец к первому и второму: . Умножим последний столбец на -1: . Полученная справа от вертикальной черты квадратная матрица является обратной к данной матрице А. Итак,
А-1 = .

Сделаем проверку А-A-1-= = .

Пример 13. Методом элементарных преобразований найти обратную матрицу для матрицы: А= .

Решение. Приписываем к исходной матрице справа единичную матрицу того же порядка и контрольный столбец: . С помощью элементарных преобразований столбцов приведем левую “половину” к единичной, совершая одновременно точно такие же преобразования над правой матрицей:

Вместо второй строки напишем сумму третьей и второй строк:

Итак,
А-1 = .

Пример 14. Найти методом окаймления миноров ранг матрицы и написать один из базисных миноров.

Решение: Начинаем с миноров 1-го порядка, т.е. с элементов матрицы А. Выберем, например, минор (элемент) М1 = 1, расположенный в первой строке и первом столбце. Окаймляя при помощи второй строки и третьего столбца, получаем минор M2 = , отличный от нуля. Переходим теперь к минорам 3-го порядка, окаймляющим М2. Их всего два (можно
добавить второй столбец или четвертый). Вычисляем их: = 0. Таким образом, все окаймляющие миноры третьего порядка оказались равными нулю. Ранг матрицы А равен двум а базисным минором будет, например M2 = .

Пример15. Найти ранг матрицы А= и привести ее к ступенчатому виду.

Решение: Из второй строки вычтем первую и переставим эти строки: ~ . Теперь из второй и третьей строк вычтем первую, умноженную соответственно на 2 и 5 ~: ; из третьей строки вычтем первую; получим матрицу В = , которая эквивалентна матрице А, так как получена из нее с помощью конечного множества элементарных преобразований. Очевидно, что ранг матрицы В равен 2, а следовательно, и r(A)=2. Базисным минором является минор .

Пример 16. Исследовать систему уравнений на совместность:

Решение: Выписываем расширенную матрицу системы:

`A = .

Вычислим ранг основной матрицы системы. Очевидно, что, например, минор второго порядка в левом верхнем углу = 7 ¹ 0; содержащие его миноры третьего порядка равны нулю:

3 = = 0, M²3 = = 0.

Следовательно, ранг основной матрицы системы равен 2, т.е. r(A)=2. Для вычисления ранга расширенной матрицы `A рассмотрим окаймляющий минор

= = -35 ¹ 0,

значит, ранг расширенной матрицы r(`A) = 3. Поскольку r(A) ¹ r(`A), то система несовместна.

 

Пример 17. Решить методом Крамера систему уравнений:

Решение: Главный определитель этой системы

D = = -142 ¹ 0,

значит, система имеет единственное решение. Вычислим вспомогательные определители D i (i= ), получающиеся из определителя D путем замены в нем столбца, состоящего из коэффициентов при xi, столбцом из свободных членов:

D 1 = = - 142, D 2 = = - 284,

D 3 = = - 426, D 4 = = 142.

Отсюда x1 = D 1/D = 1, x2 = D 2/D = 2, x3 = D 3/D = 3, x4 = D 4/D = -1, решение системы - вектор С=(1, 2, 3, -1)T.

Пример 18. Решить методом Крамера систему уравнений:.

Решение: Как и в предыдущем примере, найдем главный определитель и вспомогательные определители

Находим решение системы:

x1 = D 1/D = - = 1, x2 = D 2/D = = 2, x3 = D 3/D = = 3.

Пример 19. Решить матричным способом систему уравнений

 

 

Решение: Обозначим

A = , , B =. .

Тогда данная система уравнений запишется матричным уравнением AX=B. Поскольку D = det =5 ¹ 0, то матрица A невырожденная и поэтому имеет обратную:

А-1 = 1/D , где. - алгебраическое дополнение к элементу .

Для получения решения X мы должны умножить вектор-столбец B слева на матрицу A: X = A-1B. В данном случае

A-1 =

и, следовательно,

= .

Выполняя действия над матрицами, получим:

 

x1 = 1/5(1×6+3×3-2×5) = 1/5 (6+9-10) = 1,

x2 = 1/5 (-3×6 +1×3 - 1×5) = 1/5 (- 18 + 3 + 5) = -2,

x3 = 1/5 (1×6 - 2×3 + 3×5) = 1/5 (6 -6 + 15) = 3.

 

Итак, X = (1, -2, 3)T.

Пример 19. Решить матричным способом систему уравнений, при этом проверив правильность вычисления обратной матрицы

Решение: Для нахождения решения с помощью обратной матрицы запишем систему уравнений в матричной форме AX=B, где

, , .

Как и в предыдущем примере D = det =-17 ¹ 0, поэтому матрица A невырожденная и поэтому имеет обратную. Решение системы в матричной форме имеет вид , где - матрица, обратная матрице . Найдем матрицу по формуле

А-1 = 1/D ., где =17, - алгебраическое дополнение к элементу .

Обратная матрица имеет вид: .

Проверим правильность нахождения обратной матрицы:

Находим решение системы.

Итак, решение системы: .

Пример 20. Решить систему линейных алгебраических уравнений методом Гаусса:

Решение. Преобразуем расширенную матрицу системы:

~ .

Отсюда следует, что , , т.е. исходная система несовместна. Заметим, что, применяя метод Гаусса (т.е. исключая неизвестные), мы одновременно проводим исследование системы на совместность (т.е. отыскиваем ранги матрицы системы и расширенной матрицы).

Пример 21. Решить систему линейных алгебраических уравнений методом Гаусса:

Решение: Исследуем систему на совместность:

~ ~ .

Отсюда следует, что – система совместна.

Поскольку ранг матрицы меньше числа неизвестных, то система имеет бесчисленное множество. Базисный минор |1| выделяется только из первого столбца, поэтому первая переменная x1 - базисная, а вторая x2 свободная. Обозначая x2 = t, получаем общее решение системы: x1= t, x2 =t или в векторном виде , где t - произвольная постоянная.

Придавая t различные действительные значения, получаем бесконечное множество решений исходной системы.

Пример 22. Решить однородную систему линейных алгебраических уравнений методом Гаусса:

Решение: Однородная система всегда является совместной, т.к имеет нулевое (или тривиальное) решение: . Поэтому для однородных систем особый интерес представляет вопрос о существовании ненулевых (или нетривиальных) решений.

Преобразуем расширенную матрицу системы:

~ ~ ~ ~ .

 

Имеем – система совместна. В качестве базисного минора выбираем , отвечающий переменным x1 и x2. Тогда переменная x3 - свободная переменная. Полагая x3 (где t – произвольная постоянная), получим

Отсюда , . Таким образом, общее решение системы имеет вид

, где t – произвольная постоянная.

Пример 23. Решить систему линейных алгебраических уравнений методом Гаусса:

Решение: Выпишем расширенную матрицу данной системы

и произведем следующие элементарные преобразования над ее строками: из ее второй и третьей строк вычтем первую, умноженную соответственно на 3 и 2, затем третью строку умножим на (-5) и прибавим к ней вторую:

~ ~ ~ .

Имеем – система совместна и имеет единственное решение (ранг совпадает с числом неизвестных). Поэтому все переменные будут базисными и переходим к обратному ходу метода Гаусса, т.е. обнуляем элементы над главной диагональю:

~ ~ .

В результате всех этих преобразований x1=-0.7, x2=-1.2, x3=-1.3, или в векторном виде

.

Пример 24. Решить однородную систему линейных алгебраических уравнений

 

Решение: Запишемсистему в матричной форме AX=B, где

, , .

При помощи элементарных преобразований строк приведем расширенную матрицу системы к ступенчатому виду. Поменяем местами первую и вторую строки матрицы

~ .

Умножим первую строку на -3 и прибавим ко второй строке. Умножим первую строку на -4 и прибавим к третьей строке:

.

Сложим вторую и третью строки, а затем разделим вторую строку на 13:

 

. ~ .

 

Полученная матрица является ступенчатой, содержит две ненулевые строки, поэтому .

Так как ранг матриц меньше числа неизвестных, то система имеет бесконечное множество решений. В качестве базисного минора можно взять М= = =1 , который содержит 1-ый и 2-ой столбцы матрицы. Поэтому переменные и возьмем в качестве базисных, а переменная будет свободной. Далее, используя процедуру обратного хода метода Гаусса обнуляем верхнюю часть матрицы (т. е элемент а12 ), умножив вторую строку на 3 и сложив ее со второй строкой

Полагая x3 (где t – произвольная постоянная), получим

Отсюда , . Таким образом, общее решение системы имеет вид

, где t – произвольная постоянная.

Пример 25. Решить систему линейных алгебраических уравнений методом Гаусса:

Решение: Выпишем расширенную матрицу данной системы

Преобразуем ее следующим образом: из третьей строки вычитаем первую и вторую строки, затем к первой строки прибавляем вторую, умноженную на 3:

~ ~ .

 

 

Теперь ясно, что . Согласно теореме Кронекера - Капелли, из того, что , следует несовместность исходной системы.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-03-02 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: