Методы делятся на дифференциальные и интегральные. Дифференциальные используют исходное диф. ур . Интегральные методы используют уравнения после интегрирования. Среди интегральных методов используются: 1) подстановки 2) графический 3) определение по времени полупревращения. 1) получение опытным путём данных по зависимости концентрации реагир. вещества от времени подстановки в ур. для константы скорости р-ии различного порядка. Порядок р-ии определяется уравнением-подстановкой, в которое экспериментальных данных даёт постоянное значение константы скорости р-ии 2) экспериментальные данные представляются в виде графиков. Если в координатах получится прямая линия, то р-ия 1-го порядка. Р-ия будет иметь 2-ой порядок если прямая линия получится в координатах . Для р-ии 3-го порядка линия зависимости наблюдается в координатах . 3) р-ию проводят 2 раза с разложением начальных концентр. Каждый раз определяют время полупревращения. Если окажется, что время полупревращения не зависит от начальных концентраций, значит р-ия первого порядка, т.к. . Если во втором опыте начальная концентрация была увеличена в 2 раза, а время полупревращения уменьшилось в 2 раза, значит р-ия 2-го порядка, т.к. . Для р-ии 3-го порядка при том же самом условии время полупревращения уменьшится в 4 раза, т.к. . В общем случае если порядок , .
Если начальные концентрации , то , если , то . Поделив, получим . Логарифмируя, получим , . Это соотношение сохранится и в случае определения времени превращения любой доли концентрации . Прежде рассмотрим диф. метод Вант-Гоффа. В основе метода лежит Ур . пусть измеряемое , , - текущая концентрация исходного вещества в момент времени 1 и 2. . После логарифмирования , (1). Скорость р-ии при концентрации и определяется из зависимости . , Часто получают не всю кривую , а производную определённой скорости при 2 концентрациях. Принимая, что ,тогда . Для определения ΔС измеряем концентрации вещества в какой-то момент времени и через небольшой промежуток Δτ. Графический вариант метода Вант-Гофа W=KCn прологарифмируем => является линейной функцией lgC. Определяя скорость при нескольких концентрациях, строят график lgW-lgC tgα=n. Скорость р-ии W в различный момент времени определяется как и в предыдущем случае, но тангенс угла наклона касательной к положительному направлению оси абсцисс. Определяемый таким образом порядок р-ии называется временным порядком, он учитывает влияние на порядок продолжительности р-ии. Если использовать несколько кинетических кривых, то получим истинный порядок р-ии. Время и концентрация порядка могут не совпадать. Метод изоляции. Получим выражение для константы скорости р-ии различных порядков и рассмотрим методы определения порядка р-ии применимые для тех случаев, когда кинетическое уравнение имеет вид . Пусть скорость хим. р-ии в зависимости от концентрации реагирующих веществ выражается Ур . n1, n2,.. – частные порядки р-ии или порядки р-ии соответствующие по 1-ому, 2-ому и 3-ему веществу. Сумма частных порядков определяет общий порядок р-ии. Чтобы определение частных порядков, а следовательно и общий поступают следующим образом: одно из веществ например 1-ое берут в нормальной концентрации, тогда как все остальные берут в большом избытке. Тогда концентрация этих веществ можно считать постоянными и зависимость скорости р-ии от концентрации выражается Ур . Одним из рассмотренных методов определён порядок р-ии по 1-ому веществу n1. Затем р-ию проводят снова, но в избытке берут все вещества, кроме 2-го и т.д.
|