СИСТЕМА УПРАВЛЕНИЯ РЕАКТИВНЫМ СОПЛОМ ДВИГАТЕЛЯ РД-33-2С




Система управления содержит элементы которые выполняют следующие функции:

Ø управление степенью понижения давления газа πТ* в турбине двигателя

(обеспечивается регулятором πТ*);

Ø управление давлением газа РС на срезе сопла (обеспечивается регулятором РС):

Ø ограничение минимальной площади критического сечения сопла

(обеспечивается ограничителем FKР мин в зависимости от положения РУД и температуры воздуха на входе в двигатель);

Ø выполнение условия FС> FKР (обеспечивается ограничителем минимальной площади среза FС МИН);

Ø изменение усилия для перестановки регулирующего органа, сужающих створок, в соответствии с изменением внешних условий и режимов работы двигателя (обеспечивается регулятором давления на выходе плунжерного насоса питания системы управлении соплом (на рис. 1. не показан));

Ø формирование заданного значения давления газа за турбиной (настройку регулятора πТ*) при управлении отэлектронного блока регуляторов предельных режимов (БПР) (обеспечивается программно - задающим устройством регулятора πТ* (ПЗУ рег. πТ*);

Ø поддержание заданной площади критического сечения сопла и расхода топлива в форсажной камере сгорания GТФ соответствующих режиму "Минимальный форсаж", при запуске форсажной камеры (или по электрическому сигналу с целью ограничения скорости полета) независимо от положения РУД в области форсированных режимов и их синхронное изменение на переходных форсированных режимах (обеспечивается системой формирования сигналов для задания режимов работы (СФС));

Ø блокировку питания исполнительных устройств системы управления критическим сечением сопла по приведенной частоте вращения ротора высокого давления с целью раскрытия сопла на режиме "Малый газ" (осуществляет СФС).

 

Управляющее устройство конструктивно выполнено в виде отдельных агрегатов и узлов, показанных на принципиальной схеме (рис.). Регулятор сопла РС-59А включает в себя регулятор πТ*. ограничитель FKР мин и систему формирования сигналов для задания режимов работы. Регулятор внешних створок РВС-59 включает в себя регулятор РС. Исполнительные устройства регуляторов названных параметров, обеспечивающие перемещение сужающих и расширяющих створок сопла, конструктивно выполнены отдельно в виде силовых гидроцилиндров, соединённых в кольцо.

Ограничитель FС мин представляет собой золотниковое устройство, соединяющее полости силовых гидроцилиндров управления площадью среза сопла при достижении определённой величины площади критического сечения сопла FKРс целью не допустить уменьшения отношения FС/FKР =l,035±0,015. В противном случае критическое сечение сопла (сечение с минимальной площадью) переместится в плоскость среза сопла и перестанет управляться от регулятора πТ*.

РЕГУЛЯТОР ΠТ*

Система управления πТ* обеспечивает управление площадью критического сечения сопла двигателя с целью поддержания заданного значения степени понижения давления газа в турбине πТЗ*,формируемого в программно - задающем устройстве по сигналу электронного блока БПР.

Система управления πТ* построена на принципе отклонения измеренной величины давления газа за турбиной от заданного значения.

Она включает в себя регулятор πТ* с программно - задающим устройством и объект управления рис. 3. Роль управляющего органа объекта управления выполняют створки суживающейся части сопла. С целью стабилизации перекладки сопла во времени при изменяющихся условиях полёта и режимах работы двигателя. вызывающих изменение газовых сил, действующих на створки, питание гидропривода сопла осуществляется от насоса высокого давления с регулятором давления. Регулируемое давление Рпит определяется в этом случае величиной давления Рто топлива, поступающего в основную камеру сгорания.

В целом, регулятор πТ* устанавливает рассогласование ΔΡΤ*=ΡΤ3* - Рт что при определенном давлении Рг* газа перед турбиной однозначно определяет степень понижения давления газа в турбине. Давление Рк* подводимое к программно -задающему устройству регулятора πТ*, отличается от давления Рг* только на величину потерь в камере сгорания.

Поддерживая заданное значение степени понижения давления газа в турбине, регулятор πТ* сохраняет требуемый режим работы турбокомпрессора при включении и выключении форсированных режимов.

При нерозжиге или самопроизвольном погасании пламени в форсажной камере регулятор πТ* автоматически прикрывает сопло, предотвращая падение тяги менее значения на режиме "Максимал".

При отказе электронного блока регулятор πТ* продолжает функционировать, осуществляя простейшую программу управления πТ* =const. В этом случае он выполняет роль резервной системы управления соплом.

Рассмотрим устройство и работу регулятора πТ*, используя принципиальную схему.

Роль программно - задающего устройства регулятора πТ*выполняет воздушный редуктор, к которому подводится давление воздуха за компрессором. Он представляет собой сверхзвуковое сопло Лаваля, проточная часть которого образована цилиндрической втулкой 34 и профилированным телом (иглой 33).

Воздух от компрессора высокого давления подводится к игле 33 через дроссель 35, образующий первую ступень редуцирования. При протекании воздуха далее по сужающемуся каналу увеличивается его скорость и падает давление. В самом узком (критическом) сечении скорость потока становится равной скорости звука, расширение канала после критического сечения способствует дальнейшему разгону потока и падению давления. Втулка 34 содержит канал 32 отвода статического давления Рк* за критическим сечением.

При изменении положения иглы 33 критическое сечение проточной части перемещается относительно неподвижного канала отбора статического давления Отношение давлений Рк*/Рк' (рис.5) будет определяться положением h иглы 33 При управлении давлением газа за турбиной Рт* = Рк' будет соблюдаться постоянство отношения РК*/РТ*≈ Рт*/Рт*= πТ* при неизменном положении иглы 33. А величина πТ*, есть степень понижения давления газа в турбине.

Перемещение иглы 33 осуществляется механизмом настройки регулятора πТ*, который состоит из рычага 31, кулачка 30, шестерни 38, рейки 39, силового цилиндра с поршнем 42, Управление поршнем 42 силового цилиндра осуществляется дроссельным усилителем типа "сопло-заслонка", который состоит из дроссельного пакета 47, сопла 3, заслонки 2 и каналов передачи рабочей жидкости от источника питания (РПД) с постоянным давлением.

Усилитель "сопло-заслонка" связан с управляемой полостью (снизу от поршня 42) силового цилиндра через дроссельный пакет 48, производительность которого регламентирует скорость движения поршня 42.

Заслонка 2 управляется электромагнитом Э9 по сигналу электронного блока регуляторов предельных режимов. Сигнал представляет собой последовательность импульсов одной полярности и характеризуется коэффициентом заполнения импульсов или скважностью. Величина скважности определяет степень открытия сопла 3 заслонкой 2 и величину расхода жидкости через сопло 3.

Для улучшения качества переходного процесса при управлении от электронного блока введена корректирующая отрицательная обратная связь по положению поршня 42, а следовательно, и иглы 33 воздушного редуктора. Обратная связь осуществляется при помощи датчика обратной связи (ДОС) 46. Шток поршня 42 при помощи регулировочного винта 44 перемещает сердечник 45 ДОС, что вызывает изменение электрического сигнала, передаваемого в БПР.

Рассмотрим работу автоматической системы по поддержанию требуемого значения

степени расширения газа в турбине

При нарушении равновесия мембранного механизма, например, за счет увеличения Рт* или уменьшения Ртз* происходит прогиб мембраны 24 вверх, рычаг 23 поворачивается против часовой стрелки и заслонка 28 приоткрывает сопло 29. При этом давлении в управляемой полости сверху от поршня 5 падает, и он перемещает золотник 4 вверх, обеспечивая подвод рабочей жидкости от насоса МП полости гидроцилиндров на открытие сужающих створок сопла и слив из противоположных полостей.

При движении поршня 5 вверх при помощи штока 7, двух рычагов 19, 21 и ролика 20 производится удлинение пружины 17 обратной связи., увеличивается усилие, развиваемое ею, и рычаг 23 при помощи заслонки 28 прикрывает сопло 2V, Движение поршня 5 прекращается, золотниковый усилитель открыт па определённую величину, соответствующую разности.

Такому положению золотника однозначно соответствует определённая скорость перемещения поршней гидроцилиндров, а следовательно, и сужающих створок сопла. Но эта скорость не может превышать максимальную, определяемую производительностью насоса НП.

По мере увеличения площади FKP критического сечения сопла будет падать давление Рт*, мембрана 24 начнет возвращаться в исходное положение, сопло 29— прикрываться заслонкой 28, поршень 5 будет возвращать золотник 4 в нейтральное положение. Когда золотник 4 перекроет каналы, связывающие его с полостями силовых гидроцилиндров, перемещение створок сопла прекратится.

При отсутствии пружины 17 обратной связи возвращение золотника 4 в исходное положение происходило бы за счёт большего снижения давления Рт*чем его значение на новом установившемся режиме, и возникновение по этой причине неустойчивого колебательного процесса было бы неизбежным.

При снижении давления Рт* относительно заданного происходят процессы изменения параметров и положения элементов противоположного направления.

Регулировочные упоры золотника 4 снизу 37 и сверху 22 ограничивают площади открытия окон золотника и, следовательно, расход жидкости.

ОГРАНИЧИТЕЛЬ FKР MIN.

Прикрытие сопла по сигналам регулятора π Т * может происходить только до значений, заданных программой FKР = FKР РУД, Т В *). Программное управление соплом необходимо:

• в случае отказа регулятора π Т *;

• при колебательном переходном процессе, возможном при работе замкнутой автоматической системы управления степенью понижения давления газа на турбине;

• при переходе на более высокий форсированный режим.

 

Реализует программное управление ограничитель минимальной площади

критического сечения сопла.

Он включает в себя:

ü механическое вычислительное устройство;

ü датчик температуры Т В * воздуха на входе;

ü преобразователь сигнала температуры Т В * в перемещение;

ü дифференциальный механизм с кулачком ошибки;

ü золотниковый дроссельный усилитель;

ü устройство обратной связи.

Сигнал по положению РУД воспринимается гидрозамедлителем и передается в программное задающее устройство ограничителя FKР MIN.

Золотниковый дроссельный усилитель при вступлении в работу ограничителя FKР MIN управляет устройством 1 регулятора.

Рассмотрим устройство и работу ограничителя FKР MIN, используя функциональную и принципиальную схемы.

Основным элементом механического вычислительного устройства (МВУ) является кулачковый механизм, содержащий объемный кулачок 14 и рычаг 13.

Сигнал по положению РУД поступает от гидрозамедлителя (13) на пару конических шестерен 22, 23, передается на два зубчатых сектора 16, 17 и при помощи втулки с зубчатым сектором 15 поворачивает кулачок 14.

Сигнал по температуре Тв* воздуха на входе поступает от датчика температуры ТДК в виде командного давления РтВ *) к преобразователю его в перемещение. Преобразователь состоит из измерительного устройства командного давления, золотникового дроссельного усилителя, силового цилиндра и устройства обратной связи.

Измерительное устройство содержит ползушку 19, установленную на штоке 44, и пружину 18, опирающуюся на тарелку 20 и регулировочный винт 21.

Дроссельный усилитель образован жиклером 40 подвода жидкости от регулятора постоянства давления и золотниковой парой "ползушка 19 - шток 44".

Силовой цилиндр имеет два поршня 42,43, установленных на штоке 44. Поршень 43 с гильзой цилиндра 45 образует управляемую полость, подключенную к дроссельному усилителю. Полость снизу от поршня 42 питается постоянным давлением, образованным цепочкой из двух жиклеров 39, 41. Благодаря установке ползушки 19 на шток 44 реализована обратная связь между исполнительным и усилительным устройствами.

Командное давление РтВ *) поступает в полость, образованную ползушкой 19 и штоком 44.

В положении равновесия сила, действующая на ползушку 19 от перепада

давлений Δ РтВ *) = РтВ *) - Рст , воспринимается усилителем пружины 18, а шток 44 занимает такое положение относительно ползушки 19, при котором слив через пару "ползушка - шток" равновесный, и давления в полостях силового цилиндра равны.

Изменение температуры Т В * приводит к изменению давления РТВ) и перемещению ползушки 19 относительно штока 44. Это приводит к изменению слива из управляемой полости сверху от поршня 43 через отверстие в штоке 44, прикрываемое кромкой ползушки 19.

Благодаря этому шток 44, связанный с поршнями 42,43, как бы следит за движением ползушки 19, перемещаясь до тех пор, пока не будет установлен равновесный слив через золотниковую пару "ползушка - шток". При этом шток перемещает кулачок 14 в осевом направлении так, что каждому значению температуры Т В * соответствует определенное положение пространственного кулачка 14.

Таким образом, положение пространственного кулачка 14 зависит от положения РУД и температуры Т В *. Кулачок воздействует на рычаг 13 и через систему шестерен (дифференциальный механизм) и рычагов на скользящую втулку 49.

Сюда же на скользящую втулку через дифференциальный механизм приходит сигнал обратной связи по положению створок, регулирующих критическое сечение сопла. Механизм обратной связи состоит из тяги, рычагов и канатов, соединяющих агрегат PC с ведущей створкой.




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: