Возможны два варианта построений сопряжений двух окружностей:
· Задан радиус сопряжения.
· Задана точка сопряжения на одной из окружностей.
Сопряжение может быть внешним, внутренним и смешанным.
1. Сопряжение двух окружностей дугой заданного радиуса R (Рисунок16)
Рисунок 16
При внешнем сопряжении (рисунок 16) центр сопряжения О определяется пересечением двух геометрических мест – вспомогательных окружностей радиусов R1 + R и R2 + R, проведенных соответственно из центров сопрягаемых дуг, то есть из точек О1 и О2. Точки сопряжения А и В определяются как точки пересечения заданных дуг с прямыми ОО1 и ОО2.
Рисунок 17
При внутреннем сопряжении (рисунок 17) центр сопряжения О определяется пересечением двух геометрических мест – вспомогательных окружностей радиусов R – R1 и R – R2, проведенных соответственно из О1 и О2 (рисунок 17).
Рисунок 18
При смешанном сопряжении (рисунок 18) центр сопряжения О определяется в пересечении вспомогательных окружностей радиусов R - R1 и R + R2, проведенных соответственно из О1 и О2. Точки сопряжения А и В лежат на пересечении линий центров ОО1 и ОО2 с дугами заданных окружностей.
2. Сопряжение двух окружностей, если задано точка сопряжения А на одной из окружностей (рисунок 19).
Соединяют точку А с центром О1 и откладывают на этой прямой отрезок АС, равный R2. К середине отрезка СО2 восставляют перпендикуляр до пересечения с продолжением линии О1А. Точка О пересечения и является центром сопряжения. Вторая точка сопряжения В лежит на пересечении линии центров ОО2 с дугой второй окружности.
Рисунок 19
ПОСТРОЕНИЕ КАСАТЕЛЬНЫХ
|
Построение касательных к окружности основано на том, что касательная перпендикулярна к радиусу, проведенному в точку касания.
1. Касательная к окружности из точки А, лежащей вне окружности (рисунок 20).
Рисунок 20
Отрезок ОА, соединяющий данную точку с центром окружности, делят пополам и из полученной О1, как из центра описывают вспомогательную окружность радиусом R = О1А. Вспомогательная окружность пересекает заданную в точке С. Прямая АС является касательной к окружности, так как угол АСО прямой, как вписанный в окружность и опирающийся на ее диаметр.
2. Касательная к двум окружностям может быть внешней, если обе окружности расположены с одной стороны от нее, и внутренней, если окружности расположены с разных сторон от касательных.
2.1 Внешняя касательная к окружностям радиусов R1 и R2 (рисунок 21).
Рисунок 21
Из центра О1 большей окружности проводят вспомогательную окружность радиусом R1 – R2. Отрезок О1О2 делят пополам и проводят вспомогательную окружность радиусом R = О3О1. Точки пересечения этих окружностей соединяют с центром О1 и продолжают до пересечения с окружностью радиуса R1 в точках В и D. Эти точки являются точками касания окружности большего диаметра. Из центра О2 проводят прямые О2А и О2С, соответственно параллельные О1В и ОD, до пересечения с контуром окружности в точках А и С. Прямые АВ и СD – искомые внешние касательные к двум окружностям.
2.2 Внутренняя касательная к двум окружностям радиусов R1 и R2 (рисунок 22).
Рисунок 22
Из центра окружности О1 проводят вспомогательную окружность радиусом R1 + R2. Делят отрезок О1О2 пополам, и из полученной точки О3 проводят вторую вспомогательную окружность радиусом R = О3О1. Точки пересечения этих окружностей соединяют с центром О1 и на пересечении с окружностью радиуса R1 получают точки касания А и С. Из точки О2 проводят прямую, параллельную прямой О1А, и получают точку касания В на малой окружности. Аналогично построена точка касания D. Прямые АВ и СD – искомые внутренние касательные к двум окружностям.
|