Влияние ТЭЦ на окружающую среду.




 

Из всех, существующих на нынешний день видов электростанций тепловые станции, работающие на органическом топливе, более всего загрязняют атмосферу. Объёмы загрязнения окружающей среды и вид загрязнения зависят от типа и мощности станций.

Результатом работы тепловых станций является загрязнение атмосферы углекислотой, выделяющейся при сжигании топлива, окисью углерода, окислами серы, углеводородами, окислами азота, огромными количествами твёрдых частиц (зола) и другими вредными веществами. Кроме того происходит значительное тепловое загрязнение водоёмов при сбрасывании в них тёплой воды.

Увеличение количества углекислоты в атмосфере Земли ведёт к возникновению так называемого «парникового эффекта». Углекислый газ поглощает длинноволновое излучение нагретой поверхности Земли, нагревается и тем самым способствует сохранению на ней тепла. Увеличение доли углекислого газа в атмосфере может привести к повышению на несколько градусов температуры низких слоёв атмосферы, а это в свою очередь, может привести к таянию ледников Гренландии и Антарктиды и затоплению части суши.

Наряду с увеличением содержания углекислого газа, происходит уменьшение доли кислорода в атмосфере, который расходуется на сжигание топлива на тепловых станциях.

Вредное воздействие на животный и растительный мир оказывает загрязнение атмосферы окисью серы. Наибольшее загрязнение атмосферы серой приходится как раз на долю электростанций и отопительных установок.

Вредное воздействие окиси углерода на человека и животных состоит в том, что она, соединяясь с гемоглобином крови, очень быстро лишает организм кислорода.

Станции, работающие на угле потребляют его в больших количествах и больше всего выбрасывают загрязняющих атмосферу веществ. Выбросы в атмосферу зависят от качества сжигаемого угля.

Сбросы горячей воды в водоёмы и повышение вследствие этого их температуры приводят к нарушению экологического равновесия, установившегося в естественных условиях, что неблагоприятно влияет на флору и фауну. Тепловое загрязнение водоёмов может быть уменьшено с переходом на замкнутые циклы использования воды.

Таким образом мы видим, что влияние ТЭЦ на биосферу огромно и неблагоприятно. Но несмотря на это пока тепловые электростанции и теплоэлектроцентрали остаются преобладающими при производстве электроэнергии и тепла для нужд человека.

 

5. Технологическая схема КЭС. Назначение каждого элемента схемы. Основные особенности КЭС.

 


К – котёл (парогенератор) предназначен для получения пара из питательной воды;

ПН – питательный насос – для подачи питательной воды в котёл;

ДВ – дутьевой вентилятор – для подачи воздуха в топку котла, для поддерживания процесса горения;

Д – дымосос – для удаления дымовых газов из котла;

БН – багерный насос – для удаления золы и шлака из котла;

ПП – пароперегреватель – для получения пара высоких параметров;

Т – паровая турбина;

Г – электрический генератор – для выработки электроэнергии;

Кр – конденсатор для охлаждения пара;

ЦН – циркуляционный насос – для подачи воды в конденсатор;

КН – конденсатный насос – для удаления конденсата из конденсатора;

Да – деаэратор – для удаления газов из конденсата; для восполнения потерь туда же подаётся химически очищенная вода;

Т – повышающий трансформатор;

РУ ВН – распределительное устройство высокого напряжения (110 кВ и выше)

ТСН – трансформатор собственных нужд;

РУ СН – распределительное устройство собственных нужд – для электропитания двигателей и освещения;

Конденсационные электрические станции КЭС – это тепловые паротурбинные электростанции, в которых теплота, выделяющаяся при сжигании органического топлива превращается сначала в механическую энергию, а затем в электрическую.

Характерный признак КЭС – отработанный в турбине пар не используется для нестанционных нужд, а подвергается охлаждению (конденсации) в специальных устройствах – конденсаторах, после чего направляется обратно в котёл. Для работы КЭС требуется большое количество воды. Поэтому строят их вблизи водоёмов. В качестве топлива на конденсационных электрических станциях используется уголь, нефть или природный газ.

Твёрдое топливо (уголь) сначала дробится специальными дробилками, затем подсушивается и размельчается до пылевидного состояния специальными мельницами. Угольная пыль вместе с воздушным потоком подаётся в топку котла дутьевым вентилятором ДВ для лучшего сгорания топлива.

Продукты сгорания топлива (дымовые газы) пройдя золоуловители с помощью дымососа Д выбрасываются в атмосферу через дымовую трубу.

Теплота, получаемая при сжигании топлива, используется для получения пара. Пар из котла (парогенератора) подаётся в пароперегреватель ПП, где его параметры (температура и давление) доводятся до необходимых величин, а затем по паропроводу поступает на рабочие лопатки паровой турбины Т.

Если между рабочими лопатками турбины не происходит расширения пара, то есть давление пара не меняется, то такая турбина называется активной.

У реактивной турбины происходит расширение пара, проходящего через каналы рабочих лопаток. В зависимости от показателей расширения пара турбины характеризуются степенями реактивности. Сейчас турбины выполняют многоступенчатыми, причём в одной турбине могут быть как активные, так и реактивные (с разной степенью реактивности) ступени.

В турбине энергия пара преобразуется в механическую энергию вращения ротора генератора Г, вырабатывающего электрическую энергию.

Отработавший в турбине пар после своего расширения от начального давления на входе турбины – 30 МПа до конечного на выходе 0,0035 МПа поступает в конденсатор турбины Кр, где превращается в воду – конденсат, который конденсатным насосом КН откачивается и проходит через деаэратор Да. Там из воды удаляются газы и к ней добавляется химически очищенная вода, чтобы восполнить потери. После чего вода вновь подаётся в котёл, и затем цикл превращения воды повторяется.

Система технического водоснабжения КЭС включает в себя источник водоснабжения (водоём), циркуляционные насосы ЦН, которыми охлаждающая вода из водоёма подаётся в конденсатор, а также подводящие и отводящие водоводы.

 

Основные особенности КЭС:

1. Строится по возможности ближе к месторождениям топлива.

2. Работает по свободному графику выработки электроэнергии (график выработки не зависит от теплового потребления).

3. Низкоманёвренные – разворот турбин и набор нагрузки из холодного состояния требует 3-10 часов).

4. Выработанная электроэнергия отдаётся в электрические сети повышенных напряжений 110 – 750 кВ.

5. Имеют сравнительно низкий КПД: 30 – 40 %, максимум 42 %.

 

ЛИТЕРАТУРА:

 

1. Гиршфельд В.Я., Кароль Л.А. «Общий курс электростанций». М. Энергия 1976 г.

2. Поярков К.М. «Электрические станции, подстанции, линии и сети». М. Высшая школа 1983 г.

3. Веников В.А., Путятин Е.В. «Введение в специальность» Электроэнергетика. Высшая школа 1988 г.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-04-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: