Теоретический материал для самостоятельного изучения. Занятие № 20. Тема: Динамика колебательного движения.




ФИЗИКА, ГРУППА № 24, 02.11.2020 г.

Занятие № 20

Тема: Динамика колебательного движения.

Цель: рассмотреть уравнения, описывающие колебания тела.

План:

1. Уравнение движения для шарика, движущегося прямолинейно вдоль горизонтали.

2. Уравнение движения математического маятника.

 

Теоретический материал для самостоятельного изучения

Для того чтобы описать количественно колебания тела под действием силы упругости пружины или колебания шарика, подвешенного на нити, воспользуемся законами механики Ньютона.

Уравнение движения тела, колеблющегося под действием силы упругости. Согласно второму закону Ньютона произведение массы тела m на ускорение его равно равнодействующей F всех сил, приложенных к телу:

m = . (3.1)

Это — уравнение движения. Запишем уравнение движения для шарика, движущегося прямолинейно вдоль горизонтали под действием силы упругости пружины (см. рис. 3.3). Направим ось ОХ вправо. Пусть начало отсчета координат соответствует положению равновесия шарика (см. рис. 3.3, а).

В проекции на ось ОХ уравнение движения (3.1) можно записать так: mах = Fx упр, где ах и Fx упр соответственно проекции ускорения и силы упругости пружины на эту ось.

Согласно закону Гука проекция Fx ynp прямо пропорциональна смещению шарика из положения равновесия. Смещение же равно координате х шарика, причем проекция силы и координата имеют противоположные знаки (см. рис. 3.3, б, в). Следовательно,

Fx yпp = -kх, (3.2)

Разделив левую и правую части уравнения (3.2) на m, получим

Так как масса m и жесткость k — постоянные величины, то их отношение также постоянная величина.

Мы получили уравнение, описывающее колебания тела под действием силы упругости. Оно очень простое: проекция ах ускорения тела прямо пропорциональна его координате х, взятой с противоположным знаком.

Уравнение движения математического маятника. При колебаниях шарика на нерастяжимой нити он все время движется по дуге окружности, радиус которой равен длине нити l. Поэтому положение шарика в любой момент времени определяется одной величиной — углом α отклонения нити от вертикали. Будем считать угол α положительным, если маятник отклонен вправо от положения равновесия, и отрицательным, если он отклонен влево (см. рис. 3.5). Касательную к траектории будем считать направленной в сторону положительного отсчета углов.

Обозначим проекцию силы тяжести на касательную к траектории маятника через F τ. Эта проекция в момент, когда нить маятника отклонена от положения равновесия на угол α, равна:

Fτ = -mg sin α. (3.5)

Знак «-» здесь стоит потому, что величины Fτ и а имеют противоположные знаки. При отклонении маятника вправо (α > 0) составляющая силы тяжести τ направлена влево и ее проекция отрицательна: Fτ< 0. При отклонении маятника влево (α < 0) эта проекция положительна: F τ > 0.

Обозначим проекцию ускорения маятника на касательную к его траектории через аτ. Эта проекция характеризует быстроту изменения модуля скорости маятника.

Согласно второму закону Ньютона

τ = Fτ,

или

τ = -mg sin α. (3.6)

Разделив левую и правую части этого уравнения на m, получим

аτ = -g sin α. (3.7)

Ранее предполагалось, что углы отклонения нити маятника от вертикали могут быть любыми. В дальнейшем будем считать их малыми. При малых углах, если угол измерен в радианах,

sin α ≈ α.

Следовательно, можно принять

аτ = -gα. (3.8)

Если угол α мал, то проекция ускорения примерно равна проекции ускорения на ось ОХ: аτ ≈ аx (см. рис. 3.5). Из треугольника AВО для малого угла а имеем:

Подставив это выражение в равенство (3.8) вместо угла α, получим

Это уравнение имеет такой же вид, что и уравнение (3.4) для ускорения шарика, прикрепленного к пружине. Следовательно, и решение этого уравнения будет иметь тот же вид, что и решение уравнения (3.4). Это означает, что движение шарика и колебания маятника происходят одинаковым образом. Смещения шарика на пружине и тела маятника от положений равновесия изменяются со временем по одному и тому же закону, несмотря на то, что силы, вызывающие колебания, имеют различную физическую природу. Умножив уравнения (3.4) и (3.10) на m и вспомнив второй закон Ньютона mах = Fx peз, можно сделать вывод, что колебания в этих двух случаях совершаются под действием сил, равнодействующая которых прямо пропорциональна смещению колеблющегося тела от положения равновесия и направлена в сторону, противоположную этому смещению. Ускорение прямо пропорционально координате (смещению от положения равновесия).

 

Основная литература по теме урока:

1) Учебник «Физика 11» Г.Я. Мякишев, Б.Б. Буховцев, М. «Просвещение»

2) интернет ресурсы

 

Домашнее задание: изучить материал, сделать краткий конспект.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-11-23 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: