Термическая обработка легирующих сталей.




Термическая обработка легированных сталей по сравнению с обработкой углеродистых имеет ряд технологических особенностей. Эти особенности заключаются в различии температур и скорости нагрева, длительности выдержки при этих температурах и способе охлаждения.

Критические температуры у одних легированных сталей выше, у других - ниже, чем у углеродистой стали. Все легирующие элементы можно разбить на две группы: элементы, повышающие критические точки Ас1 и Ас3, а, следовательно, и температуры нагрева при термической обработке (отжиге, нормализации и закалке), и элементы, понижающие критические точки. К первой группе относят Си, V, W, Si, Ti и другие элементы. В связи с этим отжиг, нормализацию и закалку сталей, содержащих перечисленные элементы, производят при более высоких температурах, чем отжиг, нормализация и закалка углеродистых сталей. Ко второй группе относят Mn, Ni и другие элементы.

Для легированных сталей требуется несколько большее время выдержки, так как они обладают худшей теплопроводностью. Длительная выдержка необходима также для получения лучших механических свойств, поскольку она обеспечивает полное растворение легированных карбидов в аустените.

Скорость охлаждения при термической обработке устанавливают в соответствии с устойчивостью переохлажденного аустенита и значением критической скорости закалки. Практически многие легированные стали закаливаются на мартенсит в масле, т. е. при меньшей скорости охлаждения, чем углеродистая сталь. У высоколегированных сталей, если они к тому же содержат большое количество углерода, способность к самозакаливанию выражена очень сильно, у низколегированных и малоуглеродистых сталей - слабее. Это объясняется большой стойкостью аустенитных зерен к превращению их при температуре Ас1 в зерна перлита.

Легированная сталь обладает большей прокаливаемостью, чем углеродистая. Чем выше степень легированности сталей, тем более глубокой прокаливаемостью они обладают. Из легированных инструментальных сталей особый интерес представляют быстрорежущие стали, широко используемые для изготовления режущего инструмента.

Вольфрам, в быстрорежущей стали – основной легирующий элемент. Благодаря его высокому содержанию закаленная сталь не теряет режущей способности при высоких температурах. Вольфрам придает, быстрорежущей стали красностойкость.

Ванадий является сильным карбидообразующим элементом и создает прочные карбиды, которые затрудняют рост зерна при нагреве под закалку и уменьшают склонность стали к перегреву. Под влиянием ванадия увеличивается красностойкость быстрорежущей стали и повышается эффект вторичной твердости при отпуске, заключающийся в том, что если отпуск такой стали повторить несколько раз, то можно обеспечить полное или почти полное превращение остаточного аустенита в мартенсит. Это несколько увеличивает твердость по сравнению с закаленным состоянием.

Углерод в быстрорежущей стали очень важен как элемент, придающий стали способность закаливаться на высокую твердость. Хром в количестве около 4% настолько сильно понижает критическую скорость закалки, что сталь становится «самозакаливающейся», т. е. закаливается на воздухе. При содержании хрома выше нормы резко увеличивается количество остаточного аустенита в структуре закаленной стали, что приводит к снижению стойкости инструмента. В быстрорежущей стали содержатся марганец и кремний (не более 0,4% каждого), сера и фосфор (не свыше 0,06% в сумме).

Изделия из быстрорежущей стали до температуры закалки необходимо нагревать ступенчато: вначале медленно до 800-850°С, а затем более быстро до установленной температуры закалки (1230-1300°С). Такой способ нагрева позволяет избежать тепловых напряжений за счет уменьшения разности между температурами поверхности изделия и сердцевины металла. В качестве охлаждающей среды используют минеральное масло. Структура закаленной быстрорежущей стали представляет собой сочетание мартенсита, остаточного аустенита и сложных карбидов.

После закалки изделия из быстрорежущей стали обязательно подвергают отпуску. Отпуск таких сталей имеет свои особенности. Как правило, изделия подвергают многократному отпуску (два-три раза) при температуре 560°С для стали Р9 и 580°С Для стали Р18 с выдержкой 1 ч. Если после закалки применяют обработку холодом при температуре -80°С, то выполняют только один отпуск. Объясняется это тем, что при указанной отрицательной температуре в быстрорежущих сталях заканчивается бездиффузионное мартенситное превращение – основная часть остаточного аустенита превращается в мартенсит. Таким образом, после термической обработки структура быстрорежущей стали представляет собой отпущенный мартенсит и карбиды.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: