Получение магния. Магний - самый легкий из технических цветных металлов, его плотность 1,740 кг/м3, температура плавления 650°С. Технически чистый магний непрочный, малопластичный металл с низкой тепло- и электропроводностью. Для улучшения прочностных свойств в магний добавляют алюминий, кремний, марганец, торий, церий, цинк, цирконий и подвергают термообработке.
Для производства магния используют преимущественно карналлит (MgCl2∙КСl∙6Н2О), магнезит (MgCO3), доломит (CaCО3∙MgCО3) и отходы ряда производств, например титанового. Карналлит подвергают обогащению, в процессе которого отделяют КСl и нерастворимые примеси путем перевода в водный раствор MgCl2 и КCl. После получения в вакуум-кристаллизаторах искусственного карналлита, его обезвоживают и электролитическим путем получают из него магний, который затем подвергают рафинированию. Технически чистый магний (первичный) содержит 99,8-99,9% магния (ГОСТ 804-72). Маркировка и химический состав магниевых сплавов для фасонного литья и слитков, предназначенных для обработки давлением, приведены в ГОСТ 2581-78.
Свойства и применение магния. В зависимости от способа получения изделий магниевые сплавы делят на литейные и деформируемые.
Литейные магниевые сплавы (ГОСТ 2856-68) применяют для изготовления деталей литьем. Их маркируют буквами МЛ и цифрами, обозначающими порядковый номер сплава, например МЛ5. Отливки из магниевых сплавов иногда подвергают закалке с последующим старением. Некоторые сплавы МЛ применяют для изготовления высоконагруженных деталей в авиационной промышленности: картеры, корпуса приборов, фермы шасси и т. п.
Деформируемые магниевые сплавы (ГОСТ 14957-76) предназначены для изготовления полуфабрикатов (листов, прутков, профилей) обработкой давлением. Их маркируют буквами МА и цифрами, обозначающими порядковый номер сплава, например МА5. Сплавы МА применяют для изготовления различных деталей в авиационной промышленности. Ввиду низкой коррозионной стойкости магниевых сплавов изделия и детали из них подвергают оксидированию с последующим нанесением лакокрасочных покрытий.
|
Цветные металлы. Титан и его сплавы.
Получение титана. Титан - серебристо-белый металл с высокой механической прочностью и высокой коррозионной и химической стойкостью. Для производства титана используют рутил, ильменит, титанит и другие руды, содержащие 10-40% двуокиси титана ТiO2. После обогащения концентрат титановых руд содержит до 65% ТiO2. ТiO2 и сопутствующие окислы железа разделяют восстановительной плавкой. В процессе плавки окислы железа и титана восстанавливаются, в результате чего получают чугун и титановый шлак, в котором содержится до 80-90% ТiO2. Титановый шлак хлорируют, в результате чего титан соединяется с хлором в четыреххлористый титан TiCl4. Затем четыреххлористый титан нагревают в замкнутой реторте при температуре 950-1000°С в среде инертного газа (аргон) вместе с твердым магнием. Магний отнимает хлор, превращаясь в жидкий MgCl2, а твердые частицы восстановленного титана спекаются в пористую массу, образуя титановую губку. Путем сложных процессов рафинирования и переплава из титановой губки получают чистый титан. Технически чистый титан (ГОСТ 19807-74) содержит 99,2-99,65% титана.
Свойства и применение титана. Прочность технически чистого титана зависит от степени его чистоты и соответствует прочности обычных конструкционных сталей. По коррозионной стойкости титан превосходит даже высоколегированные нержавеющие стали.
|
Для получения сплавов титана с заданными механическими свойствами его легируют алюминием, молибденом, хромом и другими элементами. Главное преимущество титана и его сплавов заключается в сочетании высоких механических свойств (σв≥1500 МПа; δ=10-15%) и коррозионной стойкости с малой плотностью.
Алюминий повышает жаропрочность и механическую прочность титана. Ванадий, марганец, молибден и хром повышают жаропрочность титановых сплавов. Сплавы хорошо поддаются горячей и холодной обработке давлением, обработке резанием, имеют удовлетворительные литейные свойства, хорошо свариваются в среде инертных газов. Сплавы удовлетворительно работают при температурах до 350-500°С.
По технологическому назначению титановые сплавы делят на деформируемые и литейные, а по прочности - на три группы: низкой (σв=300-700 МПа), средней (σв=700-1000 МПа) и высокой (σв более 1000 МПа) прочности. К первой группе относят сплавы под маркой BT1, ко второй - ВТЗ, ВТ4, ВТ5 и др., к третьей - ВТ6, ВТ14, ВТ15 (после закалки и старения).