Основные факторы влияющие на величину предела выносливости.




 

Многочисленные эксперименты, проведенные с образцами раз­личных форм и размеров, а также практика эксплуатации деталей машин показывают, что прочность при переменных напряжениях (величина предела выносливости) в значительной степени зависит от формы и размеров детали, а также от состояния ее поверхности и воздействия окружающей среды.

В большинстве случаев испытания на выносливость проводят на лабораторных образцах диаметром 5-10 мм, имеющих в пре­делах рабочей части строго цилиндрическую форму; поверхность образцов имеет высокую чистоту. Величину предела выносливости, полученную в результате испытания таких (нормальных) образцов, будем считать одной из механических характеристик материала. Если подвергнуть испытанию на выносливость серию специальных образцов, подобных какой-либо конкретной детали, т. е. отличаю­щихся от нормальных образцов наличием концентратов напряже­ний, абсолютными размерами, качеством обработки поверхности (или только некоторыми из перечисленных факторов), то, как правило, при одном и том же материале нормальных и специальных образцов предел выносливости, определенный при испытании последних, ниже.

Таким образом, установлено, что пределы выносливости конкретной детали а материала, из которого она изготовлена, различии. Влияние факторов, от которых зависит соотношение между пределами выносливости материала (нормального образца) и детали, более или менее полно изучено лишь для симметричного цикла изменения напряжений. Поэтому примем, что величины различных факторов, влияющих на пределы выносливости, определены при испытаниях в условиях симметричных циклов изменения напряжений. Кратко рассмотрим влияние на величину предела выносливости концентрации напряжений, абсолютных размеров и состояния по­верхности деталей. При этом числовые значения коэффициентов, отражающих влияние перечисленных факторов, не приводим, они имеются в специальной литературе.

Концентрация напряжений. Снижение предела вынос­ливости за счет "наличия тех или иных концентраторов напряжений (выточек, отверстий, шпоночных канавок, прессовых посадок и т.д.) учитывается эффективным, или действительным, коэффициентом концентрации напряжений, обозначаемым - для нормальных и - для касательных напряжений.

Эффективный коэффициент концентрации напряжений представ­ляет собой отношение предела выносливости образца без концент­рации напряжений к пределу выносливости образца (или детали) тех же размеров, но с концентратором напряжений:

 

 

В отличие от теоретического коэффициента концентрации, за­висящего только от формы (геометрии) детали, эффективный коэф­фициент концентрации зависит также и от свойств материала детали: чем менее пластичен материал, тем он чувствительнее к концентрации напряжений. Эффективные коэффициенты концентра­ции устанавливают опытным путем, но в некоторых случаях при отсутствии экспериментальных данных их вычисляют по известным значениям теоретических коэффициентов концентрации ( и ) по формулам

 

(10.15)

 

Здесь - так называемый коэффициент чувствительностимате­риала к концентрации напряжений. Величина q возрастает с повы­шением предела прочности материала, но не может быть больше единицы (в этом предельном случае теоретический и действитель­ный коэффициенты концентрации равны между собой). Для деталей из серого чугуна , т. е. можно считать, что чугун практически нечувствителен к концентрации напряжений.

При неответственных расчетах и отсутствии данных о величи­нах действительных и теоретических коэффициентов концентрации величину можно определить приближенно по следующим эм­пирическим соотношениям:

а) при отсутствии острых концентраторов напряжений для дета­лей с чисто обработанной поверхностью

 

 

б) при наличии острых концентраторов напряжений

 

 

В приведенных соотношениях величины выражены в ; при их использовании не следует отдельно учитывать влияние качества поверхности детали.

Снижение концентрации напряжений, повышающее экономичность конструкций, достигается различными конструктивными мероприя­тиями (например, путем увеличения радиусов переходных галтелей в местах ступенчатого изменения размеров поперечного сечения) и термохимической обработкой (например, азотированием) зон кон­центрации.

Влияние абсолютных размеров детали. Снижение предела выносливости с ростом абсолютных размеров детали носит название масштабного эффекта. Влияние размеров детали учиты­вается масштабным фактором (или масштабным коэффициентом) , представляющим собой отношение предела выносливости, опреде­ленного при испытаниях образцов диаметром 7 мм, к пределу вы­носливости, определенному при испытании геометрически подобных образцов (или деталей) больших размеров, т.е.

 

 

Величина масштабного фактора зависит от материала детали (более прочные стали чувствительнее к масштабному эффекту), её размеров, вида деформации (как правило, при одинаковой форме и размерах детали ), наличия концентраторов напряжений (Следует иметь в виду, что часто масштабным фактором называют величину обратную указанной здесь, т.е. ; конечно меньше единицы).

Влияние состояния поверхности детали. Усталост­ные трещины, как правило, начинаются от поверхности детали. Поэтому состояние поверхностного слоя оказывает существенное, влияние на прочность при переменных напряжениях. Риски от механической обработки, повреждения поверхности и т. п. играют роль концентраторов напряжений и могут вызвать весьма значи­тельное снижение предела выносливости. Особенно неблагоприят­ное влияние оказывает коррозия поверхности.

Влияние состояния и качества поверхности детали на величину предела выносливости учитывают коэффициентом качества поверх­ности (коэффициентом поверхностной чувствительности), обозна­чаемым . Этот коэффициент представляет собой отношение предела выносливости, определенного при испытаниях образцов с полиро­ванной поверхностью, к пределу выносливости, определенному при испытаниях таких же (по форме, размерам и материалу) образцов с заданным состоянием поверхности, т.е.

 

 

Влияние состояния поверхности детали учитывают также коэффициентом, обозначенным ; при этом аналогично .

Более прочные стали чувствительнее к влиянию состояния по­верхности, чем менее прочные.

Для снижения величины , применяют обкатку поверхностей деталей роликами или обдувку стальной или чугунной дробью. Повышение предела выносливости при указанных способах поверх­ностного упрочнения ощутимее для деталей с грубо обработанной поверхностью.

Предел выносливости детали можно повысить также путем по­верхностной термической обработки (поверхностной закалкой токами высокой частоты или кислородно-ацетиленовым пламенем) или тер­мохимической обработки (цементацией или азотированием).

Совместное влияние концентрации напряжений, масштабного эффекта и состояния поверхности оценивают коэффициентом (), который принимают равным произведению трех указанных выше коэффициентов:

 

(11.15)

 

Коэффициент () можно назвать общим коэффициентом снижения предела выносливости при симметричном цикле.

Таким образом, предел выносливости детали при симметричном цикле (σ-1Д) зависит от предела выносливости (σ-1)материала, из которого изготовлена деталь, и определяется формулой

(12.15)

 

Аналогично в случае касательных напряжений

 

(13.15)



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: