При эксплуатации машин и инженерных сооружений в их элементах возникают напряжения, изменяющиеся во времени по самым разнообразным циклам. Для расчета элементов на прочность необходимо иметь данные о величинах пределов выносливости при циклах с различными коэффициентами асимметрии. Поэтому наряду с испытаниями при симметричных циклах испытания проводят и при асимметричных циклах.
Следует иметь в виду, что испытания на выносливость при асимметричных циклах выполняют на специальных машинах, конструкции которых значительно сложнее, чем конструкции машин для испытания образцов при симметричном цикле изгиба.
Результаты испытаний на выносливость при циклах с различными коэффициентами асимметрии обычно представляют в виде диаграмм (графиков), изображающих зависимость между какими-либо двумя параметрами предельных циклов.Эти диаграммы можно построить, например, в координатах , ,их называют диаграммами предельных амплитуд,они показывают зависимость между средними напряжениями и амплитудами предельных циклов, для которых максимальные напряжения равны пределам выносливости: . Здесь и ниже максимальное, минимальное, среднее и амплитудное напряжения предельного цикла будем обозначать .
Диаграмму зависимости между параметрами предельного цикла можно построить также в координатах .Такую диаграмму называют диаграммой предельных напряжений.
При расчете стальных конструкций в промышленном и гражданском строительстве применяют диаграммы, дающие зависимость между коэффициентом асимметрии цикла и пределом выносливости .
Подробно рассмотрим диаграмму предельных амплитуд (её иногда называют диаграммой ), которая в дальнейшем использована для получения зависимостей, применяемых в расчетах на прочность при переменных напряжениях.
|
Для получения одной точки рассматриваемой диаграммы необходимо испытать серию одинаковых образцов (не менее 10 штук) и построить кривую Вёлера, по которой определится величина предела выносливости для цикла с данным коэффициентом асимметрии (это относится и ко всем другим типам диаграмм для предельных циклов).
Допустим, проведены испытания при симметричном цикле изгиба; в результате получена величина предела выносливости . Координаты точки, изображающей этот предельный цикл, равны: [см. формулы (1-15) — (3.15)], т. е, точка находится на оси ординат (точка на рис. 6.15). Для произвольного асимметричного цикла по пределу выносливости , определенному из опытов, нетрудно найти . По формуле (3.15),
но [см. формулу (5.15)], следовательно,
или
(7.15)
и
(8.15)
В частности, для отнулевого цикла при пределе выносливости, разном .
Этому циклу соответствует точка на диаграмме, представленной на рис. 6.15. Определив экспериментальное значение для пяти-шести различных циклов, по формулам (7.15) и (8.15) получают координаты , и отдельных точек, принадлежащих предельной кривой. Кроме того, в результате испытания при постоянной нагрузке определяют предел прочности материала, который для общности рассуждений можно рассматривать как предел выносливости для цикла с , т. е. . Этому циклу на диаграмме соответствует точка В. Соединяя плавной кривой точки, координаты которых найдены по экспериментальным данным, получают диаграмму предельных амплитуд (рис. 6.15),
|
Рис. 6.15
Рассуждения о построении диаграммы, проведенные для циклов нормальных напряжений, применимы для циклов касательных напряжений (при кручении), но изменяются обозначения ( вместо и т. п.).
Диаграмма, представленная на рис. 6.15, построена для циклов с положительными (растягивающими) средними напряжениями . Конечно, принципиально возможно построение подобной диаграммы и в области отрицательных (сжимающих) средних напряжений , но практически в настоящее время имеется весьма немного опытных данных об усталостной прочности при . Для мало- и среднеуглеродистых сталей приближенно можно принимать, что в области отрицательных средних напряжений предельная кривая параллельна оси абсцисс.
Рассмотрим теперь вопрос об использовании построенной диаграммы. Пусть рабочему циклу напряжений соответствует точка с координатами (т. е. при работе в рассматриваемой точке детали возникают напряжения, цикл изменения которых задан какими-либо двумя параметрами, что позволяет найти все параметры цикла и, в частности, и ).
Проведем из начала координат луч через точку N. Тангенс угла наклона этого луча к оси абсцисс равен характеристике цикла:
Очевидно, что любая другая точка, лежащая в том же луче, соответствует циклу, подобному заданному (циклу, имеющему те же значения и ). Итак, любой луч, проведенный через начало координат, является геометрическим местом точек, соответствующих подобным циклам. Все циклы, изображаемые точками луча, лежащими не выше предельной кривой (т.е. точками отрезка ОК), безопасны в отношении усталостного разрушения. При этом цикл, изображаемый точкой К, является для заданного коэффициента асимметрии предельным – его максимальное напряжение, определяемое как сумма абсциссы и ординаты точки К (), равно пределу выносливости:
|
Аналогично для заданного цикла максимальное напряжение равно сумме абсциссы и ординаты точки N:
Считая, что рабочий цикл напряжений в рассчитываемой детали и предельный цикл подобны, определяем коэффициент запаса прочности как отношение предела выносливости к максимальному напряжению заданного цикла:
Как следует из изложенного, коэффициент запаса при наличии диаграммы предельных амплитуд, построенной по экспериментальным данным, можно определить графоаналитическим способом. Однако такой способ пригоден лишь при условии, что рассчитываемая деталь и образцы, в результате испытаний которых получена диаграмма, идентичны по форме, размерам и качеству обработки.
Для деталей из пластичных материалов опасно не только усталостное разрушение, но и возникновение заметных остаточных деформаций, т. е. наступление текучести. Поэтому из области, ограниченной линией АВ (рис. 7.15), все точки которой соответствуют циклам, безопасным в отношении усталостного разрушения, надо выделить зону, соответствующую циклам с максимальными напряжениями, меньшими предела текучести. Для этого из точки L, абсцисса которой равна пределу текучести от, проводят прямую, наклоненную к оси абсцисс под углом 45°. Эта прямая отсчет на оси ординат отрезок ОМ, равный (в масштабе диаграммы) пределу текучести. Следовательно, уравнение прямой LM (уравнение в отрезках) будет иметь вид
или
т. е. для любого цикла, изображаемого точками линии LM, максимальное напряжение равно пределу текучести. Точки, лежащие выше линии LM, соответствуют циклам с максимальными напряжениями, большими предела текучести (). Таким образом, циклы, безопасные как в отношении усталостного разрушения, так и в отношении возникновения текучести, изображаются точками области OADL,.
Рис. 7.15
Довольно широко применяется также диаграмма предельных напряжений, изображающая зависимость предельных значений максимальных и минимальных напряжений циклов от предельных средних напряжений (так называемая диаграмма Смита). Примерный вид такой диаграммы для среднеуглеродистой стали (для циклов с положительными средними напряжениями) показан на рис 8.15. На этой диаграмме каждый цикл изображен двумя точками. Так, предельный симметричный цикл изображен точками А и А,; точка В соответствует предельным постоянным напряжениям (); предельный отнулевой (пульсирующий) цикл ()изображен точками С и F.
Чтобы определить предел выносливости для цикла с коэффициентом асимметрии, равным R, по диаграмме, построенной по экспериментальным данным, из начала координат надо провести луч под углом к оси абсцисс. Тангенс этого луча определяется по формуле:
Ордината точки К пересечения этого луча с линией предельных напряжений дает величину .
Для получения области циклов, безопасных в отношении как усталостного разрушения, так и возникновения текучести, на луче ОВ (точки этого луча соответствуют постоянным во времени напряжениям: следует взять точку, изображающую цикл, для которого (точка Т на рис. 8.15), и провести из нее две прямые, кап показано на рисунке. Область безопасных циклов ограничена отрезком AAi оси ординат, кривыми AS, A,S, и ломаной STSI.
Рис. 8.15