Внутренняя энергия, работа и тепло




ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ

Основные определения

Термодинамика является разделом физики, в котором изучают энергию, её передачу из одного места в другое и преобразование из одной формы в другую. Термодинамика основана на наиболее общих принципах, которые являются универсальными и базируются на опытных данных многих наук.

Одним из основных специфических свойств живых существ является их способность превращать и хранить энергию в различных формах. Все биологические объекты для поддержания жизни требуют поступления энергии. Все биологические процессы связаны с передачей энергии. Растения способны получаемую ими энергию солнца накапливать в процессе фотосинтеза в форме энергии химических связей органических веществ. Животные используют энергию химических связей органических веществ, получаемых с пищей. Все процессы превращения энергии в растениях и животных происходят в пределах ограничений термодинамических принципов. Основные принципы термодинамики универсальны для живой и неживой природы.

Термодинамика использует понятие системы. Любая совокупность изучаемых объектов может быть названа термодинамической системой. Примерами систем могут служить клетка, сердце, организм, биосфера и т.п

Существует три вида термодинамических систем в зависимости от их взаимодействия с окружающей средой:

Изолированные системы не обмениваются с внешней средой ни энергией, ни веществом. Таких систем в реальных условиях не существует, но понятие изолированной системы используют для понимания главных термодинамических принципов.

Закрытые системы обмениваются со средой энергией, но не веществом. Примером такой системы может служить закрытый термос с налитым в него чаем.

Открытые системы обмениваются с внешней средой как энергией, так и веществом. Все живые существа относятся к открытым термодинамическим системам.

Классическая термодинамика не рассматривает поведение отдельных атомов и молекул, а стремится описать состояние термодинамических систем с помощью макроскопических переменных величин, которые называются параметрами состояния. Такими параметрами являются температура, объем, давление, химический состав, концентрация и т.п., то есть такие физические величины, с помощью которых можно описать состояние конкретной термодинамической системы в данное время.

Термодинамическое равновесие

Термодинамическое равновесие является состоянием системы, в котором параметры состояния не изменяются во времени. Это полностью стабильное состояние, в котором система может находиться в течение неограниченного периода времени. Если изолированная система выведена из равновесия, она стремится возвратиться к этому состоянию самопроизвольно.Например, если в термос, заполненный горячей водой, температура которой в каждой точке одинакова, бросить кусочек льда, то температурное равновесие нарушится и появится различие температур в объёме жидкости. Известно, что передача тепла будет происходить из области с более высокой температуры в область с более низкой температурой, пока постепенно во всём объёме жидкости не установится одинаковая температура. Таким образом, разница температур исчезнет, и равновесие восстановится.

Другим примером является концентрационное равновесие. Предположим, что в изолированной системе существует различие концентрации некоторого вещества. Оно вызывает перемещение вещества, которое продолжается до тех пор, пока не установится состояние равновесия, при котором концентрация вещества в пределах всей системы будет одинаковой.

Внутренняя энергия, работа и тепло

Для понимания термодинамических принципов очень важными являются понятия энергии, работы и теплоты.

Энергия в широком значении - способность системы выполнять некоторую работу. Существует механическая, электрическая, химическая энергия и т.п.

Внутренняя энергия системы - сумма кинетической и потенциальной энергии всех молекул, составляющих систему. Величина внутренней энергии газа зависит от его температуры и числа атомов в молекуле газа. В одноатомных газах (например, гелии) внутренняя энергия является действительно суммой кинетической энергии молекул. В полиатомных газовых молекулах атомы могут вращаться и вибрировать. Такая молекула будет обладать дополнительной кинетической энергией.

В твердых веществах и жидкостях взаимодействие между молекулами также способствует увеличению внутренней энергии. Общая энергия системы складывается из её внутренней энергии и кинетической и потенциальной энергии системы, взятой в целом. Величина внутренней энергии зависит от параметров состояния термодинамической системы. Абсолютная величина внутренней энергии не может быть определена, но физический смысл имеет изменение внутренней энергии, которое может быть измерено.

Энергия может накапливаться и отдаваться системой. Она может передаваться от одной системы к другой. Есть две формы передачи энергии: работа и теплота. Эти величины не являются параметрами состояния системы, так как зависят от пути процесса, в ходе которого изменяется энергия системы.

Теплота является энергией, переданной от одной системы другой из-за разницы их температур. Есть несколько путей теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность - процесс теплопередачи между объектами при их непосредственном контакте. Процесс происходит из-за столкновения молекул, в результате чего они передают избыточную энергию друг другу.

Конвекция - это процесс теплопередачи с одного объекта на другой движением жидкости или газа. Как электропроводность, так и конвекция требуют присутствия некоторого вещества.

Однако теплота может передаваться и через вакуум. Примером этому служит передача солнечной энергии через космическое пространство к Земле. Этот процесс называется излучением, при котором теплота передаётся электромагнитными волнами разной длины волны.

Другой формой передачи энергии от одной термодинамической системы другой является работа, которая совершается над системой при действии определённых сил или в самой системе. Путь совершения работы может быть различным. Например, газ в цилиндре может быть сжат поршнем или совершать расширение против сил давления поршня; жидкость может быть приведена в движение, а по твердому телу можно колотить молотом.

В биологических системах совершаются различные формы работы: механическая работа, выполняемая против механических сил; осмотическая работа, состоящая в транспорте различных веществ благодаря разности их концентраций; электрическая работа, заключающаяся в ионном транспорте в электрическом поле и т.п.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: