Урок 87 физика
Тема: «Квантовые постулаты Бора. Модель атома водорода по Бору.»
.
(Ядерная модель атома, предложенная Резерфордом, не могла объяснить факт существования атома, точнее — его устойчивость. В соответствии с законами классической электродинамики Максвелла электроны при движении по орбитам c ускорением должны непрерывно излучать электромагнитные волны. Атом должен излучать свет и терять энергию. С потерей энергии электрон за время порядка 0.1 нс должен «упасть» на ядро, а атом прекратить своё существование. В действительности атомы излучают свет, но не исчезают при этом. Кроме того, частота вращения электрона по мере приближения к ядру будет изменяться плавно, т. е. спектр излучения атома должен быть непрерывным, а не линейчатым. Таким образом, по законам классической электродинамики атом Резерфорда должен быт неустойчивым, а его спектр излучения — непрерывным, что противоречило результатам экспериментов. Ученым пришлось признать ограниченность применения законов классической физики.)
Постулаты Бора.
Первым решился на это признание выдающийся физик XX в. датский ученый Нильс Бор. В 1913 г. он с помощью гениальной интуиции сформулировал в виде постулатов основные положения новой теории.
Изучая противоречия модели атома Резерфорда и законами классической физики, Нильс Бор выдвигает постулаты, определяющие строение атома и условия испускания и поглощения им электромагнитного излучения.
Постулаты Бора показали, что атомы подчиняются законам микромира.
I постулат (постулат стационарных состояний).
Атомная система может находиться только в особых стационарных или квантовых состояниях, каждому из которых соответствует определенная энергия En. В стационарных состояниях атом не излучает энергию, при этом электроны в атомах движутся с ускорением.
Атом может находиться в стационарном состоянии сколь угодно долго.
Стационарные состояния отличаются друг от друга различными орбитами, по которым движутся электроны в атоме. Набор электронных орбит, по сути, определяет стационарные состояния электрона в атоме. Стационарные состояния можно пронумеровать, присвоив им порядковый номер n=1, 2, 3,...,причем каждое состояние обладает своей фиксированной энергией Еn
II постулат (правило частот).
Излучение света происходит при переходе атома из стационарного состояния с большей энергией Ek в стационарное состояние с меньшей энергией En. Энергия излучённого фотона равна разности энергий стационарных состояний:
Отсюда можно выразить частоту излучения:
При поглощении света, атом переходит из стационарного состояния с меньшей энергией в стационарное состояние с большей энергией. При излучении атом переходит из стационарного состояния с большей энергией в стационарное состояние с меньшей энергией.
Второй постулат противоречит электродинамике Максвелла, т.к. частота излученного света свидетельствует не об особенностях движения электрона, а лишь об изменении энергии атома.
Модель атома водорода по Бору
Используя законы механики Ньютона и правило квантования, на основе которого определяются возможные стационарные состояния атома. Бор смог вычислить радиусы орбит электрона и энергии стационарных состояний атома. Минимальный радиус орбиты определяет размеры атома.
Для наглядного представления возможных энергетических состояний электрона в атоме используется энергетическая диаграмма, на которой каждому энергетическому состоянию электрона в атоме Еn соответствует горизонтальная линия — энергетический уровень. Энергетическую диаграмму можно считать своеобразной «лестницей» с «нижней площадкой» (основным состоянием) и поднимающимися вверх «ступенями» (возбужденными состояниями). Значения энергий стационарных состояний отложены на вертикальной оси (в электрон - вольтах).
Обычно атом находится в основном состоянии (в этом состоянии атома электрон движется по первой стационарной орбите) с наименьшим значением энергии, равны:
Второй постулат Бора позволяет вычислить (по известным значениям энергий стационарных состояний) частоты излучений атома водорода.
Теория Бора приводит к количественному согласию с экспериментом для значений этих частот. Все частоты излучений атома водорода составляют в своей совокупности ряд серий, каждая из которых образуется при переходах атома в одно из энергетических состояний со всех верхних энергетических состояний (состояний с большей энергией).
Переходы в первое возбужденное состояние (на второй энергетический уровень) с верхних уровней образуют серию, названную по имени швейцарского учёного серией И. Бальмера. Эти переходы изображены стрелками: красная, зеленая и две синие линии в видимой части спектра водорода (рис. V, 3 на цветной вклейке в учебнике) соответствуют переходам:Е3 - Е2, Е4 - Е2, Е5 - Е2, Е6 - Е2.)
И. Бальмер еще в 1885 г. на основе экспериментальных данных вывел простую формулу для определения частот видимой части спектра водорода.
![]() |
R =109737, 31 (1/ см) – постоянная Ридберга.
Поглощение света — процесс, обратный излучению. Атом, поглощая свет, переходит из низших энергетических состояний в высшие состояния. При этом он поглощает излучение той же самой частоты, которую излучает, переходя из высших энергетических состояний в низшие.
Значение постулатов Бора
Эйнштейн оценил проделанную работу Бором «как высшую музыкальность в области мысли», всегда его поражавшую.
На основе двух постулатов и правила квантования Бор определил радиус атома водорода и энергии стационарных состояний атома. Это позволило вычислить частоты излучаемых и поглощаемых атомом водорода электромагнитных волн. Теория Бора позволяет описать не только атом водорода, но и ионизированные атомы (ионы) других элементов, вокруг ядер которых, как и в атоме водорода, вращается один электрон. Такие ионы называются водородоподобными. Примерами водородоподобных ионов могут служить однократно ионизированный атом гелия (Не+), двукратно ионизированный атом лития (Li + +) и т. д.
Теория Бора явилась важным этапом в развитии квантовых представлений, введение которых в физику требовало кардинальной перестройки механики и электродинамики. Такая перестройка была осуществлена в 20-е – 30-е годы XX века, когда были созданы новые физические теории квантовая механика и квантовая электродинамика.
Однако надо помнить то, что для атомов с большим числом электронов (больше 1) расчеты по теории Бора неприменимы. Представление Бора об определенных орбитах, по которым движутся электроны в атоме, оказалось весьма условным. На самом деле движение электрона в атоме очень мало похоже на движение планет или спутников. Физический смысл имеет только вероятность нахождения электрона в том или ином месте окрестности ядра.
В настоящее время с помощью квантовой механики можно ответить практически на любой вопрос, относящийся к строению и свойствам электронных оболочек атомов. С количественным описанием электронных оболочек атомов вы познакомились в курсе химии.
Д.З Составить конспект.