Волновые и корпускулярные свойства света.




В конце XVII века возникли две научные гипотезы о природе света - корпускулярная и волновая.

Современник Исаака Ньютона, нидерландский физик Христиан Гюйгенс, не отвергал существования корпускул, но полагал, что они не излучаются светящимися телами, а заполняют все пространство. Процесс распространения света Гюйгенс представлял не как поступательное движение, а как последовательный процесс передачи удара одной корпускулы о другую. Так возникли первые волновые представления о природе света.

Основную ценность начальной волновой теории света представляет принцип, первоначально сформулированный Гюйгенсом, а затем развитый Френелем. Принцип Гюйгенса-Френеля утверждает, что каждая точка, до которой дошло световое возбуждение, в свою очередь, становится центром вторичных волн и передает их во все стороны соседним точкам.

Наиболее наглядно волновые свойства света проявляются в явлениях интерференции и дифракции.

Разложение белого света объясняется тем, что он состоит из электромагнитных волн с разной длиной волны и показатель преломления зависит от длины волны. Наибольшее значение показателя преломления для света с самой короткой длиной волны - фиолетового, наименьшее для самого длинноволнового света - красного. Опыты показали, что в вакууме скорость света одинакова для света с любой длиной волны.

Сторонники Гюйгенса высказывали мнение, что свет есть распространяющееся колебание в особой среде - "эфире", которым заполнено все мировое пространство и который свободно проникает во все тела. Световое возбуждение от источника света передается эфиром во все стороны.

Изучение явлений дифракции, интерференции, поляризации и дисперсии света привело к утверждению волной теории света.

Квантовые свойства света. В 1887 г. Г. Герц при освещении цинковой пластины, соединенной со стержнем электрометра, обнаружил явление фотоэлектрического эффекта. Если пластине и стержню передан положительный заряд, то электрометр не разряжается при освещении пластины. При сообщении пластине отрицательного электрического заряда электрометр разряжается, как только на пластину попадает излучение. Этот опыт доказывает, что с поверхности металлической пластины под действием света вырываются отрицательные электрические заряды. Измерение заряда и массы частиц, вырываемых светом, показало, что эти частицы - электроны.

Квантовые представления о свете хорошо согласуются с законами излучения и поглощения света, законами взаимодействия излучения с веществом. Однако с помощью этих представлений нельзя объяснить такие хорошо изученные явления, как интерференция, дифракция и поляризация света. Эти явления хорошо объясняются в рамках волновых представлений. Все многообразие изученных свойств и законов распространения света, его взаимодействия с веществом показывает, что свет имеет сложную природу: он представляет собой единство противоположных свойств - корпускулярного (квантового) и волнового (электромагнитного). Длительный путь развития науки привел к современным представлениям о двойственной корпускулярно-волновой природе света.

Волновая теория рассматривала свет как волновой процесс, подобный механическим волнам.

Согласно современным представлениям, свет имеет двоякую природу, т.е. он одновременно характеризуется и корпускулярными, и волновыми свойствами. В таких явлениях, как интерференция и дифракция, на первый план выступают волновые свойства света, а в явлении фотоэффекта.

Световой луч – это пучок света, толщина которого много меньше расстояния, на которое он распространяется. Такое определение близко, например, к определению материальной точки, которое дается в кинематике.

Сообщество физика https://vk.com/public194235375



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-05-25 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: