Галогенирование, дегидратация и окисление одноатомных спиртов. Понятие о нуклеофильном замещении и элиминировании.




Методы получения алкинов. Получение ацетилена.

Общий способ получения алкинов — отщепление двух мо­лекул галогеноводорода от дигалогеналканов, которые содержат два атома галогена либо у соседних, либо у одного атома углерода, под действием спиртового раствора щелочи.

  С2Н5ОН  
СН2Вr - СН2Вr + 2КОН НС ≡ СН + 2КВr + 2Н2О,

 

  С2Н5ОН    
СН3 - СВr2 - СН3 + 2КОН СН3-С ≡ СН + 2КВr + 2Н2О,  

В лабораторных условиях ацетилен получают гидролизом карбида кальция:

СаС2 + 2Н2О = Са(ОН)2 + С2Н2

22. Реакции электрофильного замещения (SЕ) у аренов. Галогенирование, нитрование, сульфирование, алкилирование, ацилирование ароматических соединений (бензола, толуола, анилина, фенола, нитробензола). Правила ориентации в бензольном кольце.

Механизм реакции SEAr или реакции ароматического электрофильного замещения

 

 

В ходе реакции образуется промежуточный положительно заряженный интермедиат (на рисунке — 2b). Он носит название интермедиат Уэланда,арониевый ион или σ-комплекс. Этот комплекс, как правило, очень реакционноспособен и легко стабилизируется, быстро отщепляя катион.

Лимитирующей стадией в подавляющем большинстве реакций SEAr является первый этап.

Галогенирование бензола бромом, хлором или йодом приводит к образованию арилгалогенидов. Катализатором реакции выступает галогенид железа (III):

Образование активной частицы[2]:

Нитрование ароматических систем азотной кислотой в присутствии серной кислоты с получением нитросоединений:

Образование активной частицы[2]:

Сульфирование бензола с получением сульфокислоты:

Активной частицей в реакции является SO3.

Реакция Фриделя-Крафтса — ацилирование или алкилирование с использованием ацил- или алкилгалогенидов. Типичным катализатором реакции служит хлорид алюминия, но может использоваться любая другая сильная кислота Льюиса.

 

 

24. Способы получения аренов: получение бензола и толуола.

 

 

 

 

Одноатомные первичные, вторичные и третичные спирты. Химические свойства одноатомных спиртов – взаимодействие с металлами, реакция этерификации.

По типу атома углерода, с которым связана гидроксильная группа, различают первичные (R—CH2—OH), вторичные (R—CHOH—R') и третичные (RR'R''C—OH) спирты.

Первичный спирт: Вторичный спирт: Третичный спирт:
CH3CH2CH2CH2—OH бутанол-1 (бутиловый сприт) бутанол-2 (втор-бутиловый спирт) 2-метилпропанол-2 (трет-бутиловый спирт)

CnN2n+2O - общая формула и предельных одноатомных спиртов, и простых эфиров.

 

Реакции этерификации

Спирты вступают в реакции с минеральными и органическими кислотами, образуя сложные эфиры. Реакция обратима (обратный процесс – гидролиз сложных эфиров).

 

 

Галогенирование, дегидратация и окисление одноатомных спиртов. Понятие о нуклеофильном замещении и элиминировании.

Галогенирование (присоединение галогенов)

Присоединение галогенов по двойной связи С=С происходит легко в обычных условиях (при комнатной температуре, без катализатора). Например, быстрое обесцвечивание красно-бурой окраски раствора брома в воде (бромной воды) служит качественной реакцией на наличие двойной связи:

Еще легче происходит присоединение хлора:

Эти реакции протекают по механизму электрофильного присоединения с гетеролитическим разрывом связей в молекуле галогена.

При нагревании до 500°С возможно радикальное замещение атома водорода при соседнем к двойной связи атоме углерода:

 

Реакции дегидратации спиртов

Отщепление воды от молекул спирта (дегидратация спиртов) в зависимости от условий происходит каквнутримолекулярная или межмолекулярная реакция.

1. Внутримолекулярная дегидратация спиртов с образованием алкенов идет в присутствии концентрированной серной кислоты при нагревании выше 140 °С.

Например:

В тех случаях, когда возможны 2 направления реакции, например:

дегидратация идет преимущественно в направлении I, т.е. по правилу Зайцева – с образованием более замещенного алкена (водород отщепляется от менее гидрогенизированного атома углерода).

2. Межмолекулярная дегидратация спиртов происходит при температуре ниже 140 °С с образованием простых эфиров:

 

В присутствии окислителей [O] – K2Cr2O7 или KMnO4 спирты окисляются до карбонильных соединений:

Первичные спирты при окислении образуют альдегиды, которые затем легко окисляются до карбоновых кислот.

При окислении вторичных спиртов образуются кетоны.

 

Третичные спирты более устойчивы к действию окислителей. Они окисляются только в жестких условиях (кислая среда, повышенная температура), что приводит к разрушению углеродного скелета молекулы и образованию смеси продуктов (карбоновых кислот и кетонов с меньшей молекулярной массой).

Реакции нуклеофильного замещения – наиболее типичный круг реакций, в которых галогенуглеводороды выступают в качестве субстратов. Результатом этих реакций является замещение галогена на другой атом или группу, которые либо непосредственно выступают в роли нуклеофильного реагента, либо входят в его состав в качестве фрагмента.

Наиболее типичными реакциями нуклеофильного замещения галогеналканов и других галогенпроизводных являются:

а) реакции гидролиза

RHal + H2O  ROH + HHal

RHal + NaOH  ROH + NaHal

б) реакции образования простых эфиров (реакция Вильямсона)

RHal + R`ONa  ROR` + NaHal

в) синтез сложных эфиров

R1Hal + RCOONa  RCOOR1 + NaHal

г) аммонолиз

RHal + 2NH3  RNH2 + NH4Hal

д) синтез нитросоединений и нитритов

RHal + NaNO2  RNO2 + NaHal

RHal + NaNO2 RONO + NaHal

е) синтезнитриловиизонитрилов

RHal + NaCN  RCN + NaHal

RHal + NaCN  RNC + NaHal

ж) синтез тиолов и сульфидов

R–Hal + NaSH  RSH + NaHal

R–Hal + R1SNa  RSR1 + NaHal

2R–Hal + Na2S  RSR + 2NaHal

з) синтез фосфорорганических соединений

(CH3)2PH + CH3CH2Br + NaOH  (CH3)2PCH2CH3 + NaBr + H2O

диметилэтилфосфин

и) синтез углеводородов на основе Mg-органических соединений

R – MgHal + R’Hal  R–R’ + MgHal2

к) замещение галогена на галоген

RX + NaY  RY + NaY

Из приведенных реакций можно видеть, что реакции нуклеофильного замещения могут служить методом образования связей С–С, С–О, С–S, C–N, C–P и C–Hal.



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: