Основные типы перекрывания (пересечения) “двухсферных” атомов




С учетом постулированной двухсферной модели квазиизолированных атомов А и X возможны варианты парного межатомного взаимодействия (а именно: А-А, Х-Х и А-Х), с которыми в общем случае можно столкнуться в структурe любых кристаллов. Предположим, что в первых двух случаях взаимодействуют атомы разной химической природы, т.е. с разными наборами rs и Rсд. Не вводя конкретных значений rs и Rсд, а принимая только, что для атомов A Rсд < rs, тогда как для X, наоборот, Rсд > rs, возможные варианты парного взаимодействия упрощенно можно описать схемой, представленной на рис 3.3. Всегда на первом месте (т.е. слева) указана соответствующая характеристика первого (левого) атома. Например, перекрывание типа Rсд×rs для связи А-Х означает пересечение сферы радиуса Rсд атома А со сферой радиуса rs атома X.

Для каждого атома, ядро которого находится в общем центре двух сфер, на рис. 2.1 сплошной линией обозначена сфера радиуса rs, а пунктирной - радиуса Rсд. Принято, что для А (или А’) Rсд < rs, а для X (или X') Rсд > rs. Штриховкой выделены области пересечения сфер соседних aтомов, наличие которых является необходимым и достаточным условием реализации соответствующего типа перекрывания. Подстрочный индекс в обозначении типа перекрывания указывает суммарное число реализовавшихся парных пересечений, количество которых реально может изменяться от 0 (тип П0) до 4 (тип П4). Буквенные символы играют роль меток. Итак, возможны следующие случаи:

 

Рис 2.1. Схематическое изображение основных типов перекрывания (пересечения) “двухсферных” атомов [102].

 

1. Два атома, находящиеся па расстояниях, превышающих суммы радиусов их внешних сфер (рис. 3.3а1, 3.3а2, 3.3а3, считаются химически не связанными, так как в этом случае итоговое перекрывание их сфер (тип П0) равно нулю.

2. Химическое взаимодействие двух атомов начинается с момента пересечения внешних сфер этих атомов (рис. 2.1б1, 2.1б2, 2.1б3). Такое взаимодействие называется одинарным перекрыванием П1.

3. Представим, что взаимодействующая пара атомов (уже имеющая перекрывание типа П1) сближается. Тогда с некоторого межъядерного расстояния наружная сфера одного атома будет перекрываться сразу с обеими сферами соседнего атома в зависимости от абсолютных значений rs и Rсд атомов, такое перекрывание может осуществляться наружной сферой либо правого (рис 2.1в1, 2.1в2, 2.1в3), либо левого (рис 2.1г1, 2.1г2_ 2.1г3) атома. Такой тип взаимодействия называется двойным перекрыванием П2.

4. При сближении атомов, реализовавших перекрывание типа П2, наступит момент, начиная с которого обязательно возникнет качественно новый тип перекрывания (тройное перекрывание П3), при котором внутренние сферы обоих атомов будут перекрываться с внешней сферой соседнего (рис 2.1д1, 2.1д2, 2.1д3).

5. Сокращение межъядерного расстояния между двумя атомами, уже реализовавшими перекрывание типа П3, с некоторого момента приведет к перекрыванию также и их внутренних сфер (рис. 2.1е1, 2.1е2, 2.1е3). Этот случай, при котором попарно перекрываются каждая из двух сфер одного атома с каждой из двух сфер соседнею атома, называется четверным перекрыванием (тип П4).

6. Таким образом, в рассмотренной модели межатомного взаимодействия сближение двух атомов в общем случае сопровождается закономерным изменением типа пересечения их сферических оболочек по ряду П0 → П1 → П2 → П3 → П4. Отметим, что если два атома идентичны не только химически (в этом случае совпадают только их значения rs), но и кристаллографически (при этом условии в общем случае равны также и их значения Rсд), то из-за требований симметрии перекрывания типа П2 для них в принципе невозможны, и поэтому сразу реализуется переход П1 → П3. По той же причине абсолютные значения перекрываний, отличающихся перестановкой радиусов, для таких атомов будут одинаковы. Вследствие этого лишь связи А - А (или Х - Х) между кристаллoгpaфически идентичными атомами можно считать неполярными. Поэтому связи А - А (или Х - Х) между кристаллографически разными атомами из-за возможного различия Rсд атомов (позволяющего реализовать перекрывание типа П2), вопреки распространенному мнению, в общем случае будут полярными.

7. Согласно сказанному, для некоторой пары атомов увеличение числа перекрываний связано с уменьшением межатомного (межъядерного) расстояния. Движущей силой такого сближения является уменьшение энергии системы за счет перераспределения электронной плотности, которое можно интерпретировать либо как образование общих электронных пар (ковалентная модель), либо как переход электронов от одного атома к другому (ионная модель). В первом приближении количественной мерой такого перераспределения могут служить абсолютные значения величин перекрывания и его типа. Учитывая общепринятое мнение об увеличении прочности связи при сокращении ее длины, постулируется, что наиболее сильные химические связи образуются в результате перекрывании типа П4, а самые слабые в случае П0. Чтобы не вводить новых терминов, пересечения типа П0 рассматриваются как ван -дер -ваальсовы связи, а пересечения типа П1 считаются аналогом специфических или вторичных межатомных взаимодействий. Так как при определении КЧ атомов принято учитывать только сильные химические связи, то координационное число равно общему количеству соседних атомов, связанных с центральным только за счет пересечении типа П4, П3 и (или) П2, которые являются аналогами сильных химических взаимодействий.

Таким образом, рассмотренный метод определения КЧ некоторого атома А (X Y и др.) в структуре кристалла включает следующие стадии:

а) для анализируемой структуры проводится расчет характеристик полиэдров Вороного - Дирихле всех кристаллографически разных сортов атомов (А, Х Y, и др.), содержащихся в структуре соединения,

б) на основании полученных результатов для каждого базисного атома определяется реализующееся значение Rсд, а также устанавливается природа и количество атомов, окружающих анализируемый атом в структуре кристалла. Атомами окружения считаются все атомы, полиэдры Вороного-Дирихле которых имеют общую грань с полиэдром Вороного-Дирихле анализируемою атома (для них Ω>0). Отметим, что в общем случае контактам с непрямыми соседями #Х отвечают аномально низкие значения Ω(А - #Х) и большие r(А - #Х). Поэтому далее любые контакты типа А - #Х (независимо от состава и строения соединений, природы атомов А и #Х, конкретных значений r(A - #X) и Ω(А - #Х), а также типа пересечений) в качестве химических связей не рассматриваются;

в) для анализируемого атома и каждого из атомов его окружения (в том числе и непрямых соседей #Х, если они имеются) рассчитываются численные значения парных перекрываний соответствующих сфер,

г) проводится классификация всех парных межатомных взаимодействий с участием анализируемого атома на сильные (пересечения типа П4, П3 и П2) и слабые (тип П1 или П0);

д) значение КЧ атома принимается равным общему количеству образованных им сильных химических связей (или пересечений типа П4, П3 и П2), при этом любые пересечения с меткой #, т. Е. отвечающие непрямым соседям, не учитываются.

Расчет КЧ атомов по вышеуказанному алгоритму, а также определение некоторых других параметров полиэдров Вороного-Дирихле в структуре кристаллов соединений любою состава и строения можно осуществить с помощью не имеющего аналогов ни в России, ни за рубежом комплекса структурно-топологических программ TOPOS [104], созданного на кафедре неорганической химии Самарского государственного университета.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-09-06 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: