Как звезды светят и как они умирают 13 глава




На конференции 1938 года в Вашингтоне собрались все ведущие ученые, работавшие в то время над проблемой источника звездной энергии. Первыми выступали астрофизики: Чандра доложил о белых карликах, а Стрёмгрен — о содержании водорода в звездах. Все были согласны, что процесс синтеза является источником звездной энергии, но «в действительности никто не понимал, что делать и какие реакции нужно рассматривать», — вспоминал Бете. Он был поражен невежеством участников конференции — собравшиеся там астрофизики не имели никакого понятия о ядерной физике. «Они знают только свою астрономию», — жаловался Гамов.

Через месяц после конференции Бете решил загадку свечения звезд, по крайней мере звезд, масса которых сравнима с массой Солнца. Он работал по пятнадцать часов в сутки семь дней в неделю, углубившись в свою «Библию» и в работы Гамова и Теллера[51]. Но на один вопрос пока ответа не было: какова природа ядерных реакций, снабжавших энергией более массивные и более яркие, чем Солнце, звезды — например, Сириус А? В конце концов Бете составил цепочку ядерных реакций при гораздо более высокой температуре внутри звезд, чем при синтезе гелия из водорода. Главной проблемой в исследованиях ядерного синтеза было нахождение элементов, участвующих в реакциях при огромных внутризвездных температурах, то есть примерно при 10 миллионах градусов Кельвина, и длящихся миллионы лет[52]. Эддингтон догадывался об этом; он написал, что в начале эволюции звезды происходит «маленькая репетиция больших событий», которая позволяет достигнуть около 10 миллионов градусов Кельвина. Чандра любил говорить об этом как о случае, когда астрофизики учили физиков — ведь именно они вычислили температуру для протекания подходящих ядерных реакций.

Бете опубликовал результаты своих расчетов в 1939 году. Его статья стала поистине эпохальной для развития астрофизики. Но оставалось еще много спорных вопросов, например, что произойдет со звездой после сгорания всего ее водорода? Какие фантастические события приводят к образованию таких тяжелых элементов, как уран? В ноябре Гамов опубликовал статью, в которой обсуждал поднятые на вашингтонской конференции вопросы. Он отметил, что проблема нейтронного ядра имеет всего лишь академический интерес. Звезды всегда теряют массу и, когда она становится ниже верхнего предела Чандры, они превращаются в белых карликов. Не соглашаясь с Гамовым, Бете утверждал, что да, действительно, звезды, в 9-10 больше Солнца могут сжечь столько топлива, что их масса станет ниже верхнего предела Чандры, и они превратятся в белые карлики. Но судьба более массивных звезд — иная: когда такая звезда полностью сожжет свое топливо, она будет состоять из тяжелых стабильных элементов и прекратит коллапсировать «после формирования нейтронной сердцевины». Однако Бете все-таки считал, что эти вопросы требуют дальнейшего изучения.

Летом 1938 года Бете встретился с Робертом Оппенгеймером и его группой блестящих молодых выпускников и аспирантов Калифорнийского университета в Беркли. Увлеченные рассказами Бете, Оппенгеймер и его друзья решили тоже заняться исследованием эволюции звезд.

Оппенгеймер родился на Риверсайд-драйв в Нью-Йорке в 1904 году в богатой и интеллигентной семье. В ранней юности произошли два события, удивительным образом определившие его будущее. В 1921 году Оппенгеймер совершил традиционное для богатой американской молодежи путешествие по Европе. В один прекрасный день он побывал в шахте в Иоахимстале, в Северной Чехословакии. Там добывали руды различных металлов, в том числе смолку — липкий минерал черного цвета. В 1789 году профессор химии Берлинского университета Мартин Генрих Клапрот выделил из этой руды металл сероватого цвета. Клапрот назвал его ураном, в честь планеты Уран, недавно (в 1781 году) открытой английским астрономом Уильямом Гершелем. Урановая руда использовалась в основном для окрашивания керамики, пока Пьер и Мария Кюри не обнаружили в ней радиоактивные элементы радий и полоний. До 1940-х годов шахты в Иоахимстале были единственным источником урана в Европе, и использовали его уже далеко не только в декоративных целях.

Когда Роберту Оппергеймеру исполнилось 18 лет, отец отправил его на ранчо в горы Сангра-де-Кристо к северо-востоку от Санта-Фе в Нью-Мексико — приобщиться к походной жизни и освоить верховую езду. Именно там Оппенгеймер впервые увидел гору с плоской вершиной около городка Лос-Аламос. И уран, и Лос-Аламос сыграли огромную роль в его жизни.

Человек с крайне сложным характером, Оппенгеймер прятал свою неуверенность за внешним высокомерием. «Роберт заставлял людей ощущать себя дураками. Я это почувствовал на себе, но не обращал внимания. А вот другие — обращали», — вспоминал Бете. Защитив диссертацию в Гарварде, Оппенгеймер отправился изучать новую физику — квантовую механику — к ведущим ученым Европы. Невероятно талантливый, схватывающий все на лету, он произвел сильное впечатление на Борна, Гейзенберга и Паули. Вернувшись в Соединенные Штаты, Оппенгеймер отказался от хорошего места в Гарвардском университете и поехал в Беркли — «именно потому, что там еще не было никакой школы теоретической физики. Я просто подумал, что неплохо было бы начать что-нибудь новое», — позже вспоминал он. И для этого Беркли было идеальным местом — рядом находился Калифорнийский технологический институт, где трудились такие превосходные теоретики, как Ричард Чейз Толмен, и лучшая в мире группа исследователей космических лучей под руководством Роберта Милликена. Например, у Милликена работал Карл Андерсон, открывший позитрон. Исследования космических лучей находились тогда на передних рубежах физики и были единственным (до появления ускорителей) способом изучения высокоскоростных частиц. Вскоре Оппенгеймер стал тут признанным экспертом.

Работая и в Калифорнийском технологическом институте, и в Беркли, Оппенгеймер мог пользоваться советами лучших физиков Калтеха при создании своей собственной школы теоретической физики. Как и Ландау в СССР, он был полон решимости вывести свою страну на первое место в мировой науке. И ему действительно удалось создать лучший центр теоретической физики в Соединенных Штатах.

Все соглашались с тем, что лекции Оппенгеймера трудны для восприятия. Но он умел передать важность предмета, о котором шла речь, красоту решений, обрисовать яркость перспектив. Будучи блестящим физиком, по сути своей он оставался все-таки дилетантом. Оппенгеймер любил производить впечатление утомленного европейского интеллектуала; с сигаретой или трубкой во рту, он говорил бархатистым шепотом, перемежая длинными драматическими паузами совершенно банальные истины. К своему огорчению, он реализовался лишь как администратор, руководитель крупнейшего научного проекта XX века — Манхэттенского проекта по созданию атомной бомбы, центр которого располагался в Лос-Аламосе, в Нью-Мексико. Но Оппенгеймер, несомненно, был и прекрасным научным руководителем — целое поколение молодых физиков обязано ему своей карьерой. Большинство из них сделали свои лучшие открытия в физике после войны, но начинали они все в Манхэттенском проекте, под руководством Оппенгеймера.

Среди них был и нобелевский лауреат Луис Альварес. Он считал, что, если бы Оппенгеймер прожил до 1970-х годов, когда нейтронные звезды стали установленным фактом и поиск черных дыр шел полным ходом, он получил бы Нобелевскую премию «за вклад в астрофизику».

Летом 1938 года Оппенгеймер попросил Бете рассказать его студентам о вашингтонской конференции. Увидев этих пытливых и азартных ребят, Бете решил не привлекать их внимание к проблеме источника излучения массивных звезд и к тому, что происходит с ними при затухании[53]. Студенты Оппенгеймера походили на акул — они были готовы наброситься на все лакомые задачи, о которых мог бы рассказать им Бете, а он хотел, чтобы первенство в их решении было за ним.

Пытаясь прояснить для себя гипотезу Бете о загадочной судьбе массивных звезд, Оппенгеймер пришел к необходимости применения в этом случае общей теории относительности. Тогда в Калтехе работал Ричард Чейз Толмен, признанный гуру общей теории относительности. Ричард Чейз Толмен родился в 1881 году в семье квакеров в Массачусетсе. Он внес значительный вклад в общую теорию относительности Эйнштейна и считался одним из ведущих космологов мира. Эйнштейн посетил Калтех в 1931 году именно для того, чтобы встретиться с Толменом, — он уважал его за глубину и широту интересов, а также ценил высокий интеллект и тактичность ученого. Оппенгеймер часто бывал у Толмена дома, отчасти еще и потому, что, как говорили, у него был роман с женой знаменитого космолога.

Толмен заинтересовался статьей Ландау, содержащей идею (созвучную идеям Чандры) о том, что белый карлик может коллапсировать при массе более определенного предела. Позже Толмен провел очень важные исследования в рамках Манхэттенского проекта. Именно он впервые предложил рассматривать взрыв, направленный внутрь звезды, как способ сжатия ядерного топлива для ядерного взрыва на Земле. Толмен посоветовал Оппенгеймеру и Роберту Серберу, молодому сотруднику Оппенгеймера, прочесть статью Ландау 1938 года по оценке минимальной массы, необходимой для образования нейтронного ядра внутри звезды. Концепция нейтронной звезды очень увлекла Толмена. Это была классическая задача, требующая применения общей теории относительности. Плотность нейтронной звезды в десять миллионов раз больше, чем плотность белого карлика, поэтому теория относительности предсказывает огромное искривление пространства вблизи нейтронной звезды, не описываемое теорией тяготения Ньютона.

Но вскоре выяснилось, что статья Ландау 1938 года была ошибочна. Оппенгеймер и Сербер сразу увидели, что Ландау использовал для оценки минимально возможной массы образования нейтронного ядра теорию тяготения Ньютона, а не общую теорию относительности, и прямо заявили, что его выводы неверны. Если бы они знали, что Ландау в то время томился в сталинских застенках, они наверняка бы высказались более деликатно. В своем исследовании они сосредоточились на изучении внутриядерных сил. Внутри ядра нейтроны и протоны максимально сближены, расстояние между ними в десять тысяч раз меньше миллиардной доли сантиметра (10-13 сантиметра). При такой плотности ядерные силы огромны и во много раз превышают силу гравитации. Поэтому нейтронное ядро может содержать намного больше вещества, чем рассчитал Ландау.

Исходя из немногого, что было известно тогда о ядерных силах, Оппенгеймер и Сербер оценили минимальную массу для стабильного нейтронного ядра. Она оказалась равной примерно одной десятой массы Солнца, то есть в сто раз больше, чем полагал Ландау. Отсюда следовало, что модель Эддингтона для звезд типа Солнца не верна. Имей Солнце нейтронное ядро с 10 % своей массы, астрономы должны были бы наблюдать определенные эффекты, которых не может быть, если вещество Солнца — идеальный газ. А этих эффектов никто не видел.

Но если нейтронное ядро — это звезда? Существует ли максимальная масса нейтронной звезды — нейтроны ведь тоже могут создавать давление вырождения, как и электроны? И что произойдет, если ее масса будет превышена? Оппенгеймер решил выяснить все это вместе со своими аспирантами Джорджем Волковым и Хартлендом Снайдером. Объединив общую теорию относительности с зарождающейся ядерной физикой, они заложили основу теории эволюции коллапсирующих звезд. Их исследования показали, каким образом массивные звезды могут превращаться в белых карликов либо в нейтронные звезды, или же сколлапсировать полностью.

Самая известная статья Оппенгеймера в соавторстве с его учеником Джорджем Волковым «О массивных нейтронных сердцевинах» была опубликована в «Physical Review» в начале 1939 года. С минимумом элегантных расчетов они решили задачу, которая ранее не поддавалась ни Ландау, ни самому Оппенгеймеру и Серберу, и ответили на вопрос: какова максимальная масса стабильной нейтронной звезды? Не обладая большими познаниями в астрофизике и воспользовавшись помощью Толмена, они подсчитали, что максимальная масса такой звезды должна составлять о,1–0,7 массы Солнца. Звезда будет иметь очень высокую плотность и ничтожный диаметр около 20 километров. На этом они остановились и отказались от решения ключевой проблемы: что случится, если максимальная масса будет превышена.

Конечно, был один физик в Калтехе, обладавший большими познаниями в астрофизике, — это Цвикки. Но его избегали, ибо кому приятно слышать о себе «круглый дурак»? Интеллигент Оппенгеймер всегда держался от Цвикки на расстоянии, но тот задел и его. Через четыре месяца после появления статьи Оппенгеймера и Волкова он опубликовал свою работу в «Physical Review», связав в ней нейтронные звезды со сверхновыми, при этом ни разу не сославшись на своих коллег.

Чандра вспоминал, что еще в 1934–1935 годах вместе с фон Нейманом они изучали практически те же вопросы, которые Оппенгеймер и Волков рассмотрели в своей новой работе.

Фон Нейман занимался исследованием нейтронных звезд гораздо активнее Чандры, который предпочитал рассматривать идеальные системы, а не вникать в детали ядерной физики. Это объяснялось слабым развитием ядерной физики в начале 1930-х годов. Не стремился он размышлять и над выводами общей теории относительности. Он считал ее кладбищем физиков, наблюдая это на примере Эддингтона и Милна. Вариант теории относительности, созданный Эддингтоном специально для демонстрации неправильности вычислений Чандры, и попытки Милна сформулировать свою космологическую теорию взамен теории Эйнштейна принесли им немало вреда. «Я не желал вдаваться в эту область физики, мне хотелось иметь более надежный фундамент», — вспоминал Чандра. Он отказывался формулировать свои выводы в привычной для физиков форме и продолжал публиковать статьи, написанные в стиле классической астрофизики. Неудивительно, что большинство физиков их игнорировало.

Разумеется, Чандра был в курсе последних достижений в области ядерной физики. Он изучал соответствующую литературу и даже читал курс по ядерной физике. Он был хорошо подготовлен к дискуссии на конференции в Вашингтоне. В работе 1939 года Бете упоминает — с уважением — о беседах с Чандрой во время и после конференции. Зато члены группы Оппенгеймера Чандру серьезно не воспринимали — не считали его «настоящим» физиком. В своей статье по нейтронным звездам Оппенгеймер и Волков хвалили Эддингтона за создание современной астрофизики и цитировали статью Ландау, а о Чандре упомянули лишь в сноске.

Чандра жил в США с конца 1936 года. Даже после появления работы Оппенгеймера по астрофизике в 1938 году у него не возникло никакого желания продолжать свои работы по физике нейтронных звезд и белых карликов. Он спокойно наслаждался сельскими красотами Уильямс-Бей и домашним уютом. Подобно великим ученым, которыми он так восхищался, — Эйнштейну, Ньютону, Пуанкаре, — Чандра предпочитал иметь дело с фундаментальными математическими теориями, оставляя детали для других. Но беда была именно в том, что при изучении звезд приходилось учитывать множество важных деталей, вот почему в его знаменитой монографии «Введение в учение о строении звезд» 1938 года заключительная глава об источнике свечения звезд оказалась неудачной. Чандра хорошо знал теорию Бете, но не счел нужным о ней говорить. Вместо этого он обсуждал другие теории, прекрасно зная, что они неверны. Чандру абсолютно не интересовало сотрудничество с группой Оппенгеймера, поскольку он полностью отказался от исследования коллапса звезд и позволил Оппенгеймеру его опередить.

Тогда еще никто не знал, что происходит с массивными белыми карликами, масса которых превышает верхний предел Чандры. И возможно ли, чтобы такая звезда сократилась до чрезвычайно плотной и невообразимо малой точки? Оппенгеймер занялся этой проблемой и предложил четвертый вариант угасания звезды: она продолжает коллапсировать, захватывая вещество из межзвездного пространства в свою гигантскую пасть. Это был удар в самое сердце астрофизики, и Оппенгеймер организовал его так же тщательно, как позже Манхэттенский проект. Он правильно определил важнейшие задачи и подобрал для их решения самых подходящих ученых. Сам Оппенгеймер с Волковым и Сербером рассчитывали минимальную массу, необходимую для формирования устойчивого нейтронного ядра, и максимальную массу, при которой нейтронная звезда остается стабильной. Следующий логический шаг — выяснить, что произойдет, если максимальная масса будет превышена. Оппенгеймер возложил эту задачу на Хартленда Снайдера, великолепно владевшего сложным математическим аппаратом общей теории относительности.

Оппенгеймер и Снайдер использовали общую теорию относительности для изучения коллапса звезд. Они рассматривали настолько массивные звезды, что даже после исчерпания их ядерного топлива их масса оставалась больше максимальной и они не могли образовать стабильное нейтронное ядро. Толмен постоянно консультировал их по общей теории относительности. Для облегчения расчетов Оппенгеймер и Снайдер ограничились рассмотрением сферического облака коллапсирующего газа и попытались выяснить, что произойдет, когда радиус облака окажется меньше некоторой величины. Они назвали эту величину гравитационным радиусом — теперь она называется радиусом Шварцшильда, в честь немецкого астронома Карла Шварцшильда.

Карл Шварцшильд был блестящим физиком-теоретиком и астрофизиком. После начала Первой мировой войны он отказался от должности директора Потсдамской обсерватории и в возрасте 41 года ушел добровольцем на войну. В конце 1915 года он рассчитывал траектории артиллерийских снарядов на русском фронте и одновременно изучал работы Эйнштейна по общей теории относительности. Эта теория содержала элегантные математические гипотезы о связи гравитации с геометрией пространства-времени. Однако уравнения были такими сложными, что даже Эйнштейн единственным выходом для их решения считал аппроксимацию. Поразительно, что Шварцшильд практически сразу же нашел точное решение, используя влияние сферического объекта на окружающее пространство и время. Эйнштейн был поражен столь быстрым и простым решением и отправил Шварцшильду письмо с высокой оценкой его работы.

Шварцшильд был бы идеальным соавтором Эйнштейна. Но… в марте 1916 года он вернулся в Берлин. К сожалению, оказалось, что ученый тяжело болен — в окопах Первой мировой он подхватил редкое заболевание кожи. Вскоре Шварцшильд умер. Эддингтон тепло вспоминал о встрече с ним в Гамбурге в 1913 году, когда они участвовали в ралли со «Шварцшильдом и пятью сумасшедшими англичанами». Победителем стал, разумеется, Эддингтон.

Шварцшильда интересовало, как сферический объект искажает вокруг себя эйнштейновское пространство-время, и его не беспокоило, что полученное решение обращается в бесконечность вблизи центра объекта. Позднее расстояние от центра объекта, при котором появляется бесконечность, получило название «радиуса Шварцшильда». Радиус Шварцшильда определяет область, в которой гравитационное притяжение столь велико, что из нее ничто не может вырваться — даже свет. У каждого объекта имеется свой радиус Шварцшильда. Если звезда сожмется до размера меньше радиуса Шварцшильда, ее гравитационное поле станет невероятно мощным и исказит окружающее пространство таким образом, что получится ловушка, из которой ничто не сможет убежать. То же самое относится к Солнцу, Земле, читателю и автору этой книги и даже к печеным бобам. Радиус Шварцшильда для Солнца — около 3,2 километра, при его фактическом радиусе 695990 километров. Для человека радиус Шварцшильда имеет размер протона. Радиус Шварцшильда для самого протона — невообразимо крошечная величина. В те годы ученые сочли все это научной фантастикой. Они и представить себе не могли, что такое сжатие вообще возможно.

В 1926 году Эддингтон описывал, что случится со звездой при подобном сжатии: «кривизна окружающего пространства станет такой, что оно сомкнется вокруг звезды, оставив нас снаружи, то есть нигде». Звезда с радиусом меньше ее радиуса Шварцшильда сколлапсирует и навсегда останется бесконечно малой и бесконечно плотной, иными словами, попадет в состояние сингулярности.

В отличие от других ученых Оппенгеймер и Снайдер восприняли идею радиуса Шварцшильда вполне серьезно и применили ее к реальным звездам. И сделали удивительное открытие: при определенных условиях массивная звезда действительно может сколлапсировать до размера меньше радиуса Шварцшильда, втягивая в себя окружающее пространство и исчезая из поля зрения. Они впервые использовали термин «сингулярность Шварцшильда». Это означало, что свету необходимо бесконечно большое время, чтобы вырваться наружу.

Непонятное, мистическое, непостижимое, это решение абсолютно соответствовало тому, что ранее получил Чандра. Ведь его теория тоже утверждала, что финал эволюции звезд с массой выше определенной величины именно такова! Его ранние результаты нашли наконец свое подтверждение.

Работы Оппенгеймера и Снайдера породили интригующие вопросы, на которые сами авторы не смогли ответить. Представим себе наблюдателя, движущегося вместе со звездой, радиус которой сократился почти до размера радиуса Шварцшильда. Такой наблюдатель видит абсолютно иную картину, чем мы, находящиеся далеко от звезды: материя затягивается внутрь нее все быстрее и быстрее из-за сильного гравитационного поля вблизи границы этой области (граница называется горизонтом событий и определяется радиусом Шварцшильда)[54].

Но когда звезда оказывается за горизонтом событий, свет больше не может вырваться из нее. Мы, то есть удаленные наблюдатели, скажем, что эта звезда «замораживается». Из-за усиливающейся силы тяжести свет от нее идет до нас все дольше, и в конце концов мы увидим, что звезда не движется вообще и как бы застывает в пространстве и времени. «Звезды таким образом стремятся закрыть себя от любого общения с удаленным наблюдателем», — писали Оппенгеймер и Снайдер.

По иронии судьбы в 1939 году, в то же самое время, когда Оппенгеймер и Снайдер занимались своей новаторской работой, сам Эйнштейн пытался доказать, что «сингулярности Шварцшильда» в физической реальности не существует, поскольку «материя не может быть сосредоточена в столь малой области таким образом». Разумеется, утверждал он, звезды нельзя сжать до размера меньшего, чем радиус Шварцшильда. И великие ученые порой ошибаются. Как и большинство других, Эйнштейн отказывался даже думать о том, что звезды могут сколлапсировать полностью.

 

Между тем черные тучи сгущались над Европой. Нацизм и коммунизм влияли не только на судьбы науки, но и на жизни ее выдающихся представителей. Многие немецкие ученые вынуждены были бежать из гитлеровской Германии. Гениальные физики Бете, Бор, Эйнштейн, Ферми и выдающийся астрофизик Мартин Шварцшильд, сын Карла Шварцшильда, нашли убежище в США. Гамов и Теллер были «подарком» Соединенным Штатам от Сталина. Впервые наука стала играть важную роль в вопросах разработки новых видов оружия. В 1942 году Оппенгеймер начал полномасштабную вербовку для Манхэттенского проекта. Его цель заключалась в разработке атомной бомбы — оружия огромной разрушительной силы, способного уничтожить целые города. В свои тридцать восемь лет Оппенгеймер стал одним из самых старших ученых, занятых в проекте, — средний возраст его коллег был около двадцати четырех.

В 1941 году Чандра еще не был гражданином США, и поэтому у него возникли проблемы с допуском к оборонным работам. Его старый друг по Кембриджу Джон фон Нейман тогда ему очень помог. Чандра стал гражданским консультантом баллистической лаборатории отдела артиллерии на полигоне в Абердине, штат Мэриленд. Там он занимался вопросами баллистики, похожими на те, что решал в свое время Милн в Англии. Его очень заинтересовала физика ударных волн и механизмы переноса энергии. В 1942 году Чандра организовал коллоквиум по этой теме в Чикагском университете. Среди многочисленной аудитории были Юджин Вигнер (еще один блестящий венгерский физик, эмигрант, шурин Дирака) и Ферми. Они и многие другие ученые, участники Манхэттенского проекта, в скором времени исчезнут для всего мира, найдя убежище где-то на юго-западе США, и с ними можно будет общаться только посредством писем. Адрес их будет такой: п/о 1663, Санта-Фе, Нью-Мексико. Два года спустя Чандра начал получать письма в конвертах, на которых был указан именно этот адрес. Они были от Ханса Бете, ставшего главой теоретического отдела в Лос-Аламосе. Чандра не видел его с вашингтонской встречи в 1938 году. Первое письмо Бете отправил 20 марта 1944 года. Он писал: «Джонни фон Нейман просил у Вас узнать: не хотите ли Вы присоединиться к нашему проекту? Нам очень нужна Ваша помощь, и мы верим, что Вы сможете лучше других выполнить определенные расчеты, связанные с работой, которой Вы занимались в Абердине. Вы для нас самый подходящий человек, разбирающийся в проблемах такого рода, за исключением Джонни, который бывает здесь только часть времени. Знаете, тут работают многие Ваши друзья…»

Из-за глупейшей бюрократической волокиты Чандре удалось получить разрешение ехать в Лос-Аламос только в октябре 1944 года. К тому времени союзные войска продвигались с боями от нормандских берегов через Францию к Германии; поговаривали, что война может закончиться к Рождеству.

Чандра не любил, когда Лалита уезжала из их дома, а еще хорошо помнил расовую неприязнь, которую испытал в штате Мэриленд. «Даже на полигоне в Абердине я сталкивался с расовыми предрассудками в различной форме — в ресторанах и подобных местах, и поэтому мне очень не хотелось ехать на юг», — вспоминал он. В конце концов Чандра решил отказаться от предложения Бете и остаться в Йерксе. Однако ему было хорошо известно о том, что происходит в Лос-Аламосе на п/о 1663, он был в курсе новейших работ в ядерной физике и знал об «исчезновении» ведущих исследователей. Вскоре Бете повторил свое предложение. Он предполагал, что победа над гитлеровской Германией не за горами, но «работа здесь, скорее всего, продлится не менее чем до конца войны на Тихом океане, а возможно, и дольше». 6 августа 1945 года атомной атаке была подвергнута Хиросима, через три дня — Нагасаки. В интервью Чандра сказал, что первая атомная бомба была необходима, но вот вторая уже лишняя. Чандра пошел дальше: сначала он отрицал, что в решении о ядерной бомбардировке Японии присутствовал некий расистский подтекст, но затем добавил: «Думаю, если бы война в Германии не была закончена, вряд ли на нее сбросили бы атомные бомбы». Возникла неловкая пауза, а затем интервьюер нашел выход из создавшегося положения, предложив: «Вернемся к Вашим астрофизическим работам». Когда Чандра все-таки появился в Лос-Аламосе (это уже было в 1950-х годах), он начал работать над следующим поколением ядерного оружия — с взрывными характеристиками, очень похожими на взрыв сверхновой.

 

Глава 10



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-21 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: