Биомеханика: степени свободы




КОММЕНТАРИИ 2

При разговоре о биомеханике человеческого тела часто возникает понятие степеней свободы. Например, без этого трудно обойтись, говоря об устройстве и классификации суставов. При этом способ подсчёта этих степеней свободы и получающиеся числа часто остаются в некотором тумане. Эта статья для тех, кто чувствовал некоторую неудовлетворённость и отсутствие ясности после таких разговоров.

На пальцах

Если мы сравним паровоз, идущий по рельсам, и пароход, плывущий по морю, то чем отличается их движение? Паровоз может ехать только по рельсам. Он никуда с них не свернёт. Может только дать задний ход.

Пароход, в отличие от него, свободен плыть в любую сторону. Особенно если вокруг него бескрайний океан. Паровоз едет только по линии, а пароход — уже по плоскости. (Ну, ладно — по поверхности сферы. А точнее — геоида.) Пока скажем — нестрого и не очень правильно с точки зрения принятой терминологии, — что степень свободы парохода явно больше, чем паровоза.

А теперь возьмём самолёт. У него степень свободы оказывается ещё больше. Он уже может подняться в воздух. Он может попасть в любую точку пространства. Если, конечно, ему разрешит диспетчерская служба.

Это мы пока смотрели только на перемещения всех этих машин, или, как обычно говорят физики, — тел. Но ведь есть ещё и повороты. Паровоз не может ни задрать нос (подъём), ни наклониться в сторону (наклон), ни встать боком поперёк рельсов (поворот). Да, если рельсовый путь делает поворот, то паровоз повернёт вместе с рельсами. Но не сам. Поэтому такие повороты не считаются. Они не увеличивают степень свободы паровоза.

Пароход уже может сделать поворот. Пусть море пока будет спокойным и гладким как стекло, чтобы его легче было считать плоскостью. Тогда подъём пароходу недоступен так же как паровозу. Наклонить пароход набок, наверно, трудновато. Но если мы возьмём небольшую парусную яхту, то наклонить её, похоже, нет проблем. Судя по фотографиям, они большей частью так и плавают: перекосившись на сторону, с экипажем, висящим за бортом и чиркающим попами по гребням волн.

А вот самолёт может всё: и поднимать/опускать нос, и наклоняться в сторону, и поворачивать. Особенно если им управляет ас из отряда «Русские витязи». Они даже хвостом вперёд летают. И вверх тормашками. Что, правда, уже не увеличивает степень свободы самолёта — она и так максимальная.

Для контраста и для общности вообразим себе механизм с нулевой степенью свободы. Просто он никуда не едет: сломался. И с толкача завести не удалось.

Теперь постепенно начнём наводить научную строгость.

Одна степень свободы

Сразу же начнём выражаться более правильно. Будем говорить: «степени свободы», во множественном числе. Их может быть нуль, одна, две и так далее. Это просто число. Натуральное, т. е. целое положительное. Теперь нужно понять, как же их считают.

Вернёмся опять к началу — к паровозу. Пусть нам надо знать, как точно задать его положение на прямолинейном участке пути около станции. Свернуть он никуда не может. На другой путь тоже не может перейти: все стрелки мы предусмотрительно переключили так, чтобы он никуда не делся. Всё, что он может, это проехать несколько сотен метров в ту или обратную сторону. Как мы зададим его положение? Да просто расстоянием от какой-то точки на пути. Например, от точки, которая находится прямо напротив входа на станцию. Если паровоз проехал 100 метров от станции в сторону Санкт-Петербурга, то нам достаточно одного числа 100 м, чтобы знать, где он сейчас. А если он проехал те же 100 метров в сторону Москвы? Это же другой случай. Тогда мы напишем отрицательное число: –100 м. И снова будем точно знать, где паровоз. Рис. 1. Паровоз на прямолинейном участке рельсов.

Итак, что мы получили? Чтобы в нашей ситуации знать точное расположение паровоза, нам нужно только одно число. Вот это и значит, что у паровоза — в рамках придуманной нами ситуации — одна степень свободы. А само это число будет называться координатой паровоза. Единственной координатой, которую нам нужно знать. Или которую нам нужно сказать машинисту, чтобы он знал, куда ему отогнать паровоз.

Пусть теперь у нас будет не прямой рельсовый путь, а извилистый. Что-нибудь это меняет? Ничего, пока паровоз никуда не может деться с этого пути. Мы точно так же можем мерить расстояние вдоль рельсов и точно так же можем задать положение паровоза одним числом — расстоянием от станции. У него по-прежнему остаётся только одна координата, только одна степень свободы.

Мы можем придумать для него и другую систему координат. Пусть это будет не настоящий паровоз, а игрушечный, который бегает по кругу. В этом случае мы по-прежнему можем в качестве координаты взять расстояние от игрушечной станции. 20 см — паровозик отъехал по часовой стрелке. –20 см — а это против часовой стрелки.

Рис. 2. Паровоз на рельсовом кругу. Координата — расстояние.

Но раз у нас круг — точнее, окружность, — то нам может показаться удобнее задавать положение паровозика углом. Отмечаем центр окружности, кладём туда транспортир и меряем угол между направлением на станцию — это будет нуль — и направлением на паровозик. Вот он проехал 90° по часовой стрелке — считаем, что его координата 90°. А вот он проехал 90° против часовой стрелки — тогда его координата будет –90°

. Рис. 3. Паровоз на рельсовом кругу. Координата — угол.

Но нам по-прежнему нужна только одна координата. Мы перешли от расстояний к углам, но ничего не изменилось. У паровозика по-прежнему одна степень свободы.

Сделаем даже так. Раз мы всё время поминаем часовую стрелку, то и воспользуемся часами. Положим их в центр круга и будем отмечать положение паровозика минутами на циферблате. Или часами — это менее точно, но удобно. Паровозик на 3 часа или на 9 часов — что может быть проще? И снова у него только одна координата. И одна степень свободы.

Рис. 4. Паровоз на рельсовом кругу. Координата — часы на циферблате.
Обобщим: если тело может двигаться только вдоль одной линии, сколь угодно кривой, оно имеет одну степень свободы. Но это, если мы говорим только о местонахождении тела и не учитываем его повороты, наклоны и подъёмы. Почему не учитываем? Может быть, нам это неважно. А может быть, оно и не может никуда деться, как паровоз на рельсах.

Две степени свободы

Так, а что у нас с пароходом, который плавает по морю? Сколько координат нам нужно в этом случае? Можно поглядеть на навигатор GPS и увидеть: две координаты. Долгота и широта. Как они там считаются, нам уже не важно. До тех пор, пока нас не интересует, куда пароход повернулся носом, а интересует только, в какой точке моря он находится, нам достаточно двух координат, которые нам выдаёт система GPS.

Рис. 5. Пароход в море. Координаты: широта и долгота.

Мы можем придумать и свою систему координат. Пусть, например, пароход плавает только в зоне видимости, а у нас есть компас и дальномер. Тогда мы в качестве координат можем взять направление на пароход (угол, определяемый по компасу) и расстояние до него (по дальномеру) от маяка, на башню которого мы взобрались и который назначили началом координат. В математике такую систему координат называют полярной.

Рис. 6. Пароход в полярных координатах.

И снова мы получаем две координаты. И две степени свободы для парохода. И снова замечание: мы при этом интересуемся только положением парохода в море. И не интересуемся, куда он при этом повернулся носом и как наклонился.

А если у нас не корабль по морю идёт, а пеший турист по горам? Неважно, у туриста тоже есть навигатор и он видит на нём те же две координаты. Т. е. поверхность не обязана быть плоской.

Обобщим: если тело может двигаться только по какой-то поверхности, пусть даже не плоской, оно имеет две степени свободы. Конечно, если мы не интересуемся его поворотами и наклонами.

Три степени свободы

Теперь уже несложно разобраться и с самолётом. Кроме двух координат, которые нам даст навигатор, нам понадобится ещё высота полёта, которую мы определим альтиметром. (Система GPS тоже вычисляет высоту, но довольно приблизительно.) Получаем три координаты и, соответственно, три степени свободы.

Для самолёта мы тоже можем ввести полярные координаты, только чуть сложнее. Нам понадобятся два угла: направление на самолёт по горизонтали (компас), направление на самолёт по вертикали (какой-то угломер), а также одно расстояние — от нас до самолёта (дальномер). И мы снова получим три координаты.

Рис. 7. Самолёт в полярных координатах.

Обобщим: если тело может двигаться куда угодно в трёхмерном пространстве, оно имеет три степени свободы. Опять же, если нас не интересует, как оно при этом повернулось и куда наклонилось.

Подъём, наклон, поворот

Не будем уже возвращаться к паровозу, останемся с самолётом, рассмотрим самый сложный случай.

Если нам важно, не только, где самолёт сейчас летит, но и как он расположен в воздухе (я думаю, пилоту это важно), то нам оказывается мало уже имеющихся трёх координат.

Самолёт может задрать или опустить нос — будем это называть подъёмом. Может наклониться направо или налево — это так и назовём наклоном. И может повернуться направо или налево — это будет поворот. Получаем три угла — три новые координаты. Всего координат оказывается шесть. И шесть степеней свободы у нашего самолёта.

Рис. 8. Угловые координаты самолёта: подъём, наклон и поворот. На картинке с поворотом — вид сверху.

Обобщаем: тело в пространстве имеет шесть степеней свободы. И шесть координат: три пространственные и три угловые.

С пароходом и паровозом вы уже можете, наверно, разобраться сами.

Нужно, правда, сделать одно важное замечание.

Так три или шесть?

Получается, что количество степеней свободы какого-либо тела — это не его неизменное свойство. Это условная величина, которая зависит от того, что нам нужно знать, от условий нашей задачи. Вы сами видите: сначала мы насчитали у самолёта три степени свободы, а, изменив условия задачи, — все шесть. И тот, и другой ответ правильный. Но для разных вопросов.

Это вообще присуще математике. Чтобы считать, надо понимать, что и зачем считаешь. И ответы тогда будут разные. Поскольку разными будут способы счёта.

Вы вот, например, уверены, что дважды два всегда четыре? Умножим 2 метра — длину квадратной комнаты — на 2 метра — её же ширину. Получаем 4 квадратных метра — площадь комнаты. Любой риэлтор с этим согласится. Возьмём теперь 2 метра стальной трубы и умножим на другие 2 метра такой же трубы. И где вы видите получившиеся 4 квадратных метра? Их не существует в природе. Вычисление было явно бессмысленным.

Проверим сложение. Один плюс один будет два. Возьмём один литр спирта и один литр воды и смешаем. Химия уверяет нас, что мы никак не получим 2 литра разбавленного спирта. Свойства спирта и воды таковы, что объём (именно объём, а не масса!) раствора будет всегда меньше, чем сумма исходных объёмов. Аналогично, смешав стакан воды и стакан соли, мы не получим два стакана рассола. Химия обманет нас и на этот раз.

Даже арифметика может ошибаться. Если ей пользоваться бездумно.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-09-06 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: