Дополнительные соотношения между элементами призмы




 

Если в наклонной призме боковое ребро образует одинаковые углы со сторонами основания, которые выходят из вершины , то основание О высоты лежит на биссектрисе угла (рис. 7).

Доказательство:

 

Рис. 7

 

 

Проведем и отрезки Согласно теореме о трех перпендикулярах, имеем и . Прямоугольные треугольники и равны, поскольку имеют общую гипотенузу и одинаковые углы ( по условию). Следовательно, и , отсюда Таким образом, точка О равноудалена от сторон угла и, следовательно, лежит на биссектрисе угла . [3, 24]

 

Задачи

1. Ребро куба равно а.

Найдите:

Диагональ грани: d= a√2.

Диагональ куба: D= a√3.

Периметр основания: P= 4a.


 

2. Основанием прямой призмы является равнобедренный треугольник, в котором высота проведенная к основанию равняется 8см. Высота призмы равняется 12см. Найдите полною поверхность призмы если боковая грань что содержит основание треугольника - квадрат.

 

 

Решение

Площадь поверхности призмы будет равна сумме площадей оснований и сумме площадей боковых поверхностей, то есть , где - площадь основания призмы, - площадь боковой поверхности, содержащей основание, - площадь боковой поверхности, содержащей стороны равнобедренного треугольника. (Они равны, так как стороны основания равны в следствие того, что треугольник равнобедренный, а вторые стороны равны высоте призмы)

Поскольку боковая грань, содержащая основание треугольника, является квадратом, то основание треугольника также равно 12 см. (основание треугольника одновременно является стороной грани).

Таким образом, зная высоту и основание равнобедренного треугольника можно найти его остальные стороны и площадь:

Катеты, соответственно равны (у нас высота, являющаяся в равнобедренном треугольнике одновременно и медианой , с каждым из катетов образует прямоугольный треугольник) по теореме Пифагора:

Таким образом:

,

3. В правильной четырёхугольной призме площадь основания 144 , а высота 14 см. Найти диагональ призмы.

Решение

Правильный четырехугольник – это квадрат.

Соответственно, сторона основания будет равна

Откуда диагональ основания правильной прямоугольной призмы будет равна

Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:

Ответ: 22 см

4. Рассмотрим правильную четырехугольную призму , диагональное сечение которой – квадрат. Через вершину и середины ребер АВ и ВС проведена плоскость. Найти площадь полученного сечения, если

Решение

 

 

Построение сечения видно на рисунке, где К и L – середины сторон АВ и ВС основания призмы, Е и F – точки пересечения прямой КL соответственно с продолжениями сторон DA и DC. Сечением является пятиугольник площадь которого можно найти. Можносначала вычислить площади треугольников и а потом от площади первого треугольника вычесть удвоенную площадь второго (поскольку треугольники и равны). Однако в данном случае проще воспользоваться формулой:

 

 

Проекция пятиугольника на плоскость основания призмы есть пятиугольник , площадь которого найдем, вычитая из площади квадрата площадь треугольника ВКL:

Пусть диагональ ВD основания пересекает отрезок КL в точке О. Так как и (согласно теореме о трех перпендикулярах), то – линейный угол двугранного угла КL.

Далее находим:

 

 

Из прямоугольного треугольника по теореме Пифагора имеем:

 

 

Значит, и

 

5. Дана правильная призма: , . Найти высоту призмы.

Решение

 

 

 

Площадь основания

АВ= 2 см.

Периметр основания Р = 8 см.

Высота призмы

6. Основанием параллелепипеда служит квадрат. Одна из вершин верхнего основания равноудалена от всех вершин нижнего основания и находится на расстоянии b от этого основания. Сторона основания равна a. Найдите полную поверхность параллелепипеда.

Решение

Пусть – данный параллелепипед с основаниями , и боковыми рёбрами , причём ABCD – квадрат со стороной a, вершина равноудалена от вершин A, B, C и D, а расстояние от вершины до плоскости основания ABCD равно b. Поскольку точка равноудалена от вершин квадрата ABCD, она лежит на перпендикуляре к плоскости ABCD, проходящем через центр O квадрата. Перпендикуляр, опущенный из точки O на сторону BC, проходит через её середину M. По теореме о трёх перпендикулярах , поэтому – высота грани . Из прямоугольного треугольника находим, что

 

.

 

Значит,

 

 

Аналогично,


 

Если S – полная поверхность параллелепипеда , то

 

.

 

7. Докажите, что если сечение параллелепипеда плоскостью является многоугольником с числом сторон, большим трёх, то у этого многоугольника есть параллельные стороны.

Доказательство

У параллелепипеда 3 пары параллельных граней. Если плоскость пересекает более трёх граней, то по крайней мере две стороны многоугольника сечения лежат в противоположных гранях параллелепипеда. По теореме о пересечении двух параллельных плоскостей третьей эти две стороны параллельны.

8. В параллелепипеде грань ABCD – квадрат со стороной 5, ребро также равно 5, и это ребро образует с рёбрами AB и AD углы . Найдите диагональ .

Решение

Треугольник – равносторонний, т.к. = AB и . Поэтому . Аналогично, . Боковые рёбра треугольной пирамиды с вершиной равны между собой, значит, высота этой пирамиды проходит через центр окружности, описанной около основания ABD, а т.к. треугольник ABD прямоугольный, то точка O – середина его гипотенузы BD, т.е. центр квадрата ABCD. Из прямоугольного треугольника находим, что

 


 

Поскольку , точка равноудалена от вершин C и D, поэтому её ортогональная проекция K на плоскость основания ABCD также равноудалена от C и D, а значит, лежит на серединном перпендикуляре к отрезку CD. Поскольку || и = , четырёхугольник – прямоугольник, поэтому OK= =5. Продолжим отрезок KO до пересечения с отрезком AB в точке M. Тогда M – середина AB и MK=MO+OK= . Из прямоугольных треугольников MKB и находим, что:

 

 

9. На ребре AD и диагонали параллелепипеда взяты соответственно точки M и N, причём прямая MN параллельна плоскости и AM:AD = 1:5. Найдите отношение .

Решение

Пусть P – центр параллелограмма ABCD. Плоскости и пересекаются по прямой , поэтому прямые и пересекаются в некоторой точке Q, причём

 

 

По теореме о пересечении двух параллельных плоскостей третьей плоскости α и пересекаются по прямой, проходящей через точку E параллельно . Ясно, что точка пересечения этой прямой с прямой и есть точка N (прямая MN лежит в плоскости, параллельной плоскости ). Рассмотрим параллелограмм . Так как

 

то

 

10. Три отрезка, не лежащие в одной плоскости, имеют общую точку и делятся этой точкой пополам. Докажите, что концы этих отрезков служат вершинами параллелепипеда.

Решение

Пусть O – общая середина отрезков , и . Тогда AB|| и AD|| . Значит, плоскости ABD и параллельны. Аналогично, плоскость параллельна плоскости . В плоскостях ABD и возьмём соответственно точки C и так, что ABCD и – параллелограммы. Так как CD||AB, AB|| и || , то CD|| . Поэтому плоскости и также параллельны. Шестигранник , образован пересечением трёх пар параллельных плоскостей. Следовательно, это параллелепипед.

 

Тесты

1. Найдите длину диагонали прямоугольного параллелепипеда, измерения которого равны 2 см, 3 см и 4 см.

Варианты ответов:

 

А Б В Г Д
см 9 см см 24 см см

 


Решение

Длина диагонали параллелепипеда равна корню из суммы квадратов его измерений и составит

2. Сосчитайте сколько у прямоугольного параллелепипеда рёбер

Варианты ответов:

 

А Б В Г Д
         

 

3. Многогранник, составленный из двух равных многоугольников и , расположенных в параллельных плоскостях, и n параллелограммов …, , называется:

А) параллелепипед;

Б) призма;

В) пирамида;

Г) многогранник;

Д) конус.

4. Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется…

А) высотой призмы;

Б) ребром призмы;

В) медианой призмы;

Г) диагональю призмы;

Д) стороной призмы.

5. Прямая призма называется правильной, если ее основания…

А) равнобедренные треугольники;

Б) не правильные многоугольники;

В) параллелограммы;

Г) окружности;

Д) правильные многоугольники.

6. У параллелепипеда все грани...

А) параллелограммы;

Б) треугольники;

В) трапеции;

Г) шестиугольники;

Д) квадраты.

7. В прямоугольном параллелепипеде все ли диагонали равны?

А) нет;

Б) да.

8. У параллелепипеда противолежащие грани равны и …

А) параллельны;

Б) лежат в одной плоскости;

В) перпендикулярны;

Г) лежат в разных плоскостях;

Д) образуют между собой угол

9. У параллелепипеда все четыре диагонали пересекаются в одной точке и делятся в ней …

А) в отношении 1:2;

Б) в отношении 1:3;

В) пополам;

Г) в отношении 1:5;

10. Чему равен квадрат диагонали прямоугольного параллелепипеда?

А) сумме квадратов трех его измерений;

Б) сумме ребер;

В) сумме трех его измерений;

Г) сумме квадратов ребер;

Д) корню из суммы трех его измерений.

 


Глоссарий

Ø Многогранник, составленный из двух равных многоугольников и , расположенных в параллельных плоскостях, и n параллелограммов …, , называется призмой.

 

 

Ø Многоугольники и называются основаниями, а параллелограммы …, – боковыми гранями.

Ø Призму с основаниями и называют n – угольной призмой.

Ø Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы.

Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.

Ø Прямая призма называется правильной, если ее основания – правильные многоугольники.

Если основание призмы есть параллелограмм, то она называется параллелепипедом. У параллелепипеда все грани – параллелограммы.

Ø Грани параллелепипеда, не имеющие общих вершин, называются противолежащими.

Ø Параллелепипед, боковые ребра которого перпендикулярны к плоскости основания, называется прямым параллелепипедом.

Ø У параллелепипеда все боковые грани прямоугольники, а основания параллелограммы. Если все грани параллелепипеда – прямоугольники, то его называют прямоугольным параллелепипедом.

Ø Длины трех его ребер, которые выходят из одной вершины, называются измерениями прямоугольного параллелепипеда.

Ø Прямоугольный параллелепипед, все три измерения которого равны, называется кубом.

 


Литература

1. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Учеб. для 10 – 11 кл. сред. шк. – М.: Просвещение, 1992 – 207с.

2. Геометрія: Підруч. для учнів 10 – 11 кл. з поглибл. вивч. математики в серед. загально-освіт. закладах /Г. П. Бевз, В. Г. Бевз, В. М. Владіміров, Н. Г. Владімірова. – 2-ге вид. – К.: Освіта, 2003. – 239 с.

3. Лосєва Н. М. Геометричні тіла: Навчальний посібник. – Донецьк: ДонНУ, 2006. – 240 с.

4. Погорелов А. В. Геометрия: Учеб. для 7 – 11 кл. общеобразоват. учреждений. – 5-е изд. – М.: Просвещение, 1995. – 383 с.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: