Общие сведения об аэрофотосъемке




ФОТОТОПОГРАФИЧЕСКИЕ СЪЕМКИ

 

Фототопографией называется дисциплина, изучающая способы создания топографических карт и планов с использованием материалов фотосъемки. Теоретической основой фототопографии является фотограмметрия, которая занимается определением форм, размеров и положением различных объектов путем измерения их изображения на фотоснимках.

По способу получения фотоизображения различают воздушную (аэрофотосъемку) и наземную фотосъемки. К воздушным фототопографическим относят комбинированную и стереотопографическую, а к наземным фототопографическим – фототеодолитную. К фототопографическим съемкам относится и космическая фотографическая съемка, материалы которой используются для обновления топографических карт.

Одним из основных методов создания государственных топографических карт является стереотопографическая съемка.

 

Общие сведения об аэрофотосъемке

 

Аэрофотосъемка (АФС) местности осуществляется с самолета (АН–2, ИЛ–14, АН–30) или другого летательного аппарата при помощи специальных топографических аэрофотоаппаратов (АФА) – полностью автоматизированных приборов, управляемых электрическими командными приборами.

Во время съемочного полета АФА, включенный через командный прибор полностью осуществляет аэрофотосъемочный цикл: экспонирование (открытие и закрытие затвора АФА), перематывание пленки для нового кадра, выравнивание пленки в плоскость с точностью до 0,02 мм. Современные АФА обеспечивают выдержки от 1/30 до 1/1000 с.

Наиболее распространенные в странах СНГ АФА имеют размеры кадров 18×18 см, за рубежом – 23×23 см.

Основные части АФА следующие: объектив, состоящий из 4–10 линз; кассета для фотопленки с устройством для ее выравнивания; командный прибор, управляющий работой аэрофотоаппарата, который работает в автоматическом и полуавтоматическом режиме. Для стабилизации заданного положения АФА и уменьшения наклона плановых снимков применяют гиростабилизирующие установки.

В зависимости от величины фокусного расстояния f аэрофотоаппараты делятся на короткофокусные (70–140 мм), среднефокусные (200 мм) и длиннофокусные (350 и 500 мм).

В результате выполнения аэрофотосъемочного цикла получается непрерывный аэрофильм, представляющий собой ряд смежных аэронегативов.

По числу снимков и их взаимному расположению аэрофотосъемка подразделяется на выполненную одиночными кадрами, одномаршрутную (вдоль заданной трассы – дорог, нефте-газопроводов и других линейно-вытянутых объектов) и многомаршрутную, или площадную.

Многомаршрутная аэрофотосъемка местности производится по маршрутам, прокладываемым с запада на восток и обратно, параллельно друг другу. Для каждого маршрута намечаются входные и выходные ориентиры, четко различаемые с самолета.

Перед началом АФС рассчитывают расстояния между экспозициями затвора АФА для того, чтобы фотографирование местности выполнялось через определенные интервалы с расчетом, чтобы аэрофотоснимки в маршруте перекрывали друг друга. Тогда на каждом следующем аэрофотоснимке частично будет изображаться площадь, заснятая на предыдущем. Перекрытие двух смежных снимков в одном маршруте называется продольным перекрытием Рх и должно быть не менее 60 % от размера снимка. Расстояние между маршрутами устанавливается таким образом, чтобы поперечное перекрытие снимков Ру было не менее 30 % (рис. 10.1).

 

Рис.10.1

 

В результате продольного и поперечного перекрытия все снимки оказываются взаимосвязанными между собой. Два снимка одной и той же территории, полученные из разных точек пространства, называются стереоскопической парой.

АФС выполненная при отвесном положении оптической оси АФА (отклонение от вертикали не должно превышать 3º) называется плановой, а снимки – плановыми. Современные гиростабилизирующие установки обеспечивают отклонение оптической оси от вертикали в пределах 15–30´. Снимки получаемые с большим чем 3º отклонением оптической оси от вертикали являются перспективными.

Аэрофотоснимок представляет собой центральную проекцию местности. Если при съемке равнинной территории ось АФА занимает отвесное положение, то изображение на аэрофотоснимке подобно местности, а следовательно совпадает с ортогональной проекцией – планом. В таком случае масштаб изображения местности будет одинаков для всех частей снимка и будет равен отношению фокусного расстояния f к высоте летательного аппарата H, т. е. Отношение длины отрезка на аэрофотоснимке Sa к длине этого же отрезка на местности Sм является численным масштабом аэроснимка, т. е.

Масштаб перспективного снимка будет непостоянен, удаленные линии местности будут иметь более мелкий масштаб.

На масштаб аэрофотоснимка в целом влияет: отклонение оси аэрофотоаппарата от отвесного положения; рельеф земной поверхности, т. е. повышенные участки местности имеют более крупный масштаб и кривизна Земли – чем меньше масштаб съемки и больше охват территории, тем большее влияние она оказывает.

После окончания съемки пленка проявляется и нумеруются негативы, для чего в северо-восточном углу каждого аэрофотоснимка указываются номер снимка, шифр залета, время и дата производства аэрофотосъемки. Аэрофотоснимки изготавливают контактным способом.

С отпечатанных фотоснимков изготавливается накидной монтаж, т. е. производится последовательная накладка смежных снимков путем совмещения одинаковых контуров ситуации.

По накидному монтажу из аэроснимков производят оценку качества выполненных летно-съемочных работ: масштаб и процент продольного и поперечного перекрытий аэроснимков; прямолинейность и взаимную параллельность маршрутов; величину углов наклона оптической оси аэрофотоаппарата; правильность ориентирования аэроснимков по направлению аэрофотосъемочных маршрутов.

Комбинированная съемка

 

Комбинированная съемка – это съемка местности на фотоплане, составленном из аэрофотоснимков методами фотограмметрии. Контурную часть карты или плана получают путем дешифрирования фотоизображения. Рельеф наносится на фотоплан непосредственно на местности методом мензульной съемки.

Общая технологическая схема съемки следующая: аэрофотосъемка; планово-высотная привязка снимков; фотограмметрическое сгущение опорной сети; трансформирование аэрофотоснимков и изготовление фотоплана; создание высотного обоснования; съемка рельефа; дешифрирование фотопланов.

Плановая и высотная привязка аэрофотоснимков заключается в определении плановых координат и высот опознавательных знаков (опознаков), необходимых для создания топографической карты. Опознаки могут быть плановыми, высотными и планово-высотными.

Плановые и высотные опознаки – это контурные, хорошо опозноваемые на снимках и местности точки, которые закреплены соответствующим образом.

Процесс определения плановых координат Х и У называется плановой привязкой аэрофотоснимков, а определение высот опознаков – высотной привязкой аэрофотоснимков.

Основные методы плановой привязки – теодолитные ходы, прямые и обратные засечки и метод триангуляции.

Высотную привязку аэрофотоснимков выполняют геометрическим нивелированием при съемке с высотой сечения 0,5 и 1,0 м, а при сечении рельефа 2 м и более допускается применение тригонометрического нивелирования. При выполнении высотной привязки опознаков определяют отметки урезов воды в реках и водоемах.

В целях экономии средств и времени выполняют не сплошную плановую привязку, а разреженную привязку, т. е. плановые опознаки определяют не на каждом, а через несколько снимков на маршруте. Остальные опознаки для каждого аэрофотоснимка получают камеральными методами фотограмметрического сгущения, одним из которых является фототриангуляция. Различают пространственную и плановую фототриангуляцию.

Пространственная фототриангуляция выполняется на стереопарах аэроснимков аналитическим способом на высокоточных стереофотограмметрических приборах с использованием ЭВМ, в результате чего получают три координаты (Х,У,Н) сети сгущения.

В основе плановой фототриангуляции лежит свойство аэроснимка, как центральной проекции, где направления, проведенные из главных точек (точек пересечения координатных осей) плановых аэроснимков, практически свободны от искажений за рельеф и наклон снимка. При аналитическом способе на стереокомпараторах измеряют направления на главные, связующие, трансформационные точки и опознаки. Полученную сеть уравнивают и вычисляют плановые координаты всех пунктов.

При графическом способе направления на главные, связующие, трансформационные и опорные точки переносят с аэрофотоснимков на прозрачную основу. По опознакам, нанесенным на планшет (минимум двум) полученную сеть сгущения редуцируют, т. е. приводят к заданному масштабу на оптико-механических приборах – фоторедукторах. После этого на планшет переносят изображения всех центральных и трансформационных точек.

Трансформирование аэроснимков осуществляется с целью привязки их к масштабу составляемого плана и устранения искажений, вызванных наклоном снимков, разной высотой фотографирования и влиянием рельефа. Трансформирование выполняется на фототрансформаторах. Для этого на аэронегативе накалывают главную и все опорные точки (минимум четыре), имеющиеся на планшете. Движением кассеты фототрансформатора с негативом и экрана с планшетом добиваются совмещения проектируемых с аэронегатива точек с соответствующими точками планшета. Затем на планшет кладут фотобумагу и экспонируют негатив, получая трансформированное позитивное изображение. Рабочие части трансформированных снимков монтируют по трансформационным пунктам на твердую основу с нанесенными опорными точками, с которой затем получают копии – фотопланы.

Производстно комбинированной съемки Высотное съемочное обоснование необходимо для определения высот точек установки мензулы. Съемочное обоснование создают проложением между опознаками основных и съемочных высотных ходов. Основные высотные ходы прокладывают между пунктами нивелирования IV или более высокого класса точности, а съемочные – между точками основных высотных ходов.

В зависимости от высоты сечения рельефа, как и при высотной привязке, применяют геометрическое или тригонометрическое нивелирование. Горизонтальное проложение при обработке высотного хода определяют по фотоплану графически. Все точки высотных ходов должны быть опознаны на фотоплане и местности. С каждой станции должна быть видимость на смежные точки; их выбирают на открытых участках с таким расчетом, чтобы было удобно вести съемку рельефа.

Съемку рельефа выполняют непосредственно на фотоплане с помощью мензулы и кипрегеля (КН, КА-2). Одновременно ведется его рисовка и дешифрирование ситуации. Мензулу устанавливают в съемочной точке и приводят в рабочее положение. Ориентируют планшет и измеряют высоту инструмента i. Ориентирование выполняют по четким надежно опознанным на фотоплане и местности объектам и контурам.

К выбранным высотным пикетам предъявляют те же требования, что и при мензульной съемке: они должны находится на характерных линиях и точках рельефа (водоразделы, тальвеги, бровки, вершины и т. д.). Отметки пикетов будут определяться по формуле

υ.

Если высотный пункт находится на четко опознанном контуре, то нет необходимости определять расстояние; его можно определить на фотоплане. Рельеф местности зарисовывают в поле на фотоплане горизонталями и условными знаками (овраги, промоины и др.).

 

10.3. Дешифрирование фотопланов и аэрофотоснимков

 

Дешифрированием называется процесс опознавания по фотографическому изображению на снимке отдельных предметов и объектов местности, границ контуров, а также определение их количественных и качественных характеристик с обозначением их соответствующими условными знаками.

В зависимости от назначения выделяют топографическое дешифрирование и тематическое (почвенное, геоботаническое, геологическое и др.)

Топографическое дешифрирование наиболее универсальное, т. к. охватывает все видимые компоненты ландшафта: гидрографию, растительность, населенные пункты, дороги и др.

В зависимости от принятой технологии изготовления топографических карт и планов дешифрирование выполняют на фотопланах и на аэроснимках. При этом дешифрирование в зависимости от особенностей местности подразделяют на полевое, камеральное и комбинированное.

Полевое дешифрирование проводится путем визуального сличения фотоизображения всех контуров и объектов с местностью. Имеет высокую точность и современность, однако не является экономически выгодным.

Одновременно с полевым дешифрированием аэроснимков устанавливают названия населенных пунктов, урочищ и природных объектов, определяют скорость течения рек, глубину бродов, собирают данные о проходимости болот, характере растительного покрова и другие сведения.

Камеральное дешифрирование основано на применении дешифровочных признаков фотоизображения контуров местности характерных для тех или иных ландшафтных условий, при этом могут быть использованы фотограмметрические приборы, эталоны дешифрирования, разнообразные географические и другие материалы. Однако не все объекты могут быть отдешифрированы, т. к. не изобразились из-за своих малых размеров (колодцы, километровые столбы и т. п.). Кроме того, нельзя установить названия географических объектов.

Комбинированное дешифрирование состоит в том, что бесспорно опознаваемые элементы местности определяют камерально, а остальные дешифрируют непосредственно в полевых условиях.

Дешифрирование основано на анализе дешифровочных признаков, которые дают представление о содержании и характере объектов и контуров местности. Различают прямые и косвенные признаки дешифрирования.

К прямым признакам относятся – форма и размер объекта, тон и структура изображения, тень, отбрасываемая объектом. Форма контуров и объектов – это один из самых надежных признаков дешифрирования. Размеры дешифрируемых объектов часто уточняют представления об изображениях на аэроснимках. По форме и размерам легко отличить природные объекты от антропогенных.

Интенсивность тона зависит от условий освещенности, структуры объекта, его отражательной способности, типа фотографического материала. На цветных фотоснимках роль фототона или оптической плотности играет цвет. При спектрозональной съемке часто получают ложные цвета, что увеличивает возможность дешифрирования.

Структура изображения – это набор форм, размеров, тонов или цветов различных оттенков, которые формируют рисунок изображения.

По форме и размерам падающей тени можно установить вид объекта и его размеры.

Косвенные признаки дешифрирования основаны на многообразных взаимосвязях объектов, на использовании географических закономерностей между различными компонентами ландшафта, приуроченности объектов к определенному месту. Например, пересечение дороги с рекой часто указывает на наличие моста или брода.

Косвенные признаки имеют большое значение при тематическом дешифрировании.

Отдешифрированные в поле аэроснимки используют в качестве эталонов, сравнение с которыми позволяет проводить камеральное дешифрирование всех отдельных аэроснимков. При таком способе выполнения работ проводят полевое дешифрирование только населенных пунктов и объектов, не отобразившихся на аэроснимках (мостов, колодцев, линий электропередач и др.).

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-21 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: