Пусть P утверждает: A (B A). О спорит с ним. Как может в этом случае идти диалог? Обратимся к схеме.




P O

1. A(BA) A
2. Как вы знаете, что A? Доказывает A
3. BA B
4. Как вы знаете, что B? Доказывает B
5. A Как вы знаете, что A?
6. Ссылается на 2-й шаг О  

P одержал бы победу уже на втором шагу, если бы О не мог доказать A. Но поскольку О смог доказать A, P должен прийти к заключению импликации, имевшей место на 1 шагу. Тогда О должен доказать B или проиграть. Поскольку ему это удается, P снова должен прийти к заключению импликации (B A). Но эта работа уже проделана О и P остается только сослаться на доказательство A, сделанное О на втором шагу.

Значит, P не только выиграл данный спор, но он всегда будет побеждать в таком диалоге независимо от конкретного содержания A и B и совершенно независимо от того, доказаны ли в действительности A и B. Поэтому утверждение A (B A) может считаться общезначимым, поскольку его можно делать в любом диалоге и быть всегда правым в любом подобном споре. Именно по этой причине данное утверждение является логическим: выражаясь в терминологии Лоренцена, оно относится к так называемой эффективнойпропозициональнойлогике, которая построена на принципе общезначимости своих высказываний. Но по той же самой причине закон исключенного третьего (TND) в этой логике не фигурирует.

По мнению Миттельштедта, в свете квантовой механики эффективная пропозициональная логика частично либо ложна, либо не применима. Дело не в критике закона исключенного третьего самого по себе, а в критике логики, которая должна отказаться от этого закона и, таким образом, перестроиться, чтобы стать общезначимой.

Миттельштедт пишет: "Или мы признаем то, что утверждает квантовая теория, (а именно, что, имея два высказывания, мы можем определить, являются ли они соизмеримыми или нет), - в таком случае логика сохраняет свою значимость в полном объеме, однако, некоторые из ее законов не могут применяться, когда речь идет о несоизмеримых свойствах. Или же мы отвергаем утверждения квантовой механики и, следовательно, связываем все измеримые свойства с квантово-механическими системами, то есть вводим фиктивные объекты. В этом случае некоторые законы классической логики оказываются ложными. Те же законы логики, которые при этих условиях остаются истинными, образуют то, что можно назвать квантовой логикой"[112].

Сразу же возникает вопрос: как может часть логики оказаться ложной из-за того, что мы отвергли какую-то часть эмпирического знания, того знания, которое формулирует квантовая механика?

Посмотрим, как сам Миттельштедт развивает свою аргументацию. Он прибегает к рассмотренному выше примеру высказывания, которое общезначимо, поскольку его можно отстоять в любом споре: A (B A). Пусть A и B - взаимодополнительные высказывания квантовой физики. Тогда 2-й и 4-й шаги О означают, что A и B доказаны с помощью измерений. Но если мы рассуждаем в рамках квантовой механики, то, подойдя к 6 шагу, О больше не может ссылаться на 2-й шаг, потому что измерение B аннулирует измерение, с помощью которого доказано A, поскольку мы действительно имеем дело с дополнительными высказываниями. Таким образом, на 6-м шагу A уже нельзя принять. Следовательно, P больше не может ответить на вопрос О "Как вы знаете, что A?" (5-й шаг О); поэтому, как полагает Миттельштедт, P проигрывает этот спор.

Поэтому, если из-за незнания квантовой механики или из-за пренебрежения ею высказывание A (B A) просто принимается как общезначимое и тождественно истинное, что имеет место в эффективной логике, то все сказанное выше можно считать ложным.

Однако дело обстоит иначе, когда квантовая механика не исключается из игры. В таком случае, утверждает Миттельштедт, P может защищать высказывание A (B A) в споре, потому что на 4-м шагу О должен отказаться от своих посылок, то есть его доказательство B аннулировало бы его доказательство A. С этой точки зрения данная импликация была бы универсально доказуемой потому, что она вообще не была бы применимой.

Но это неприемлемо по следующей причине: если высказывание A (B A) имеет тот смысл, который определяется точными логическими средствами, то оно универсально значимо уже в силу этих определений и никак не зависит от каких бы то ни было сведений, заимствованных из квантовой механики. Оно означает только следующее: " Если доказано A, то, если доказано B, то и A доказано". Значит, если A не доказано, высказывание все же остается верным, поскольку оно утверждает нечто лишь в том случае, когда A доказано. Если доказательство A аннулировано доказательством B, то мы приходим к случаю, когда неверно, что доказано A. И здесь высказывание остается верным. Поэтому не имеет значения, применимо ли в данном случае логическое высказывание, поскольку это не отражается на его формальной истинности.

Подход Штегмюллера

В одной из недавних работ Штегмюллер также утверждал, что вести речь о квантовой механике можно только, если перейти к неклассической логике[113]. Исходя из некоторых работ Суппеса[114], Штегмюллер начинает со следующего тезиса: "В квантовой физике имеет место парадокс теории вероятностей, возникающих из-за того, что классическая теория вероятностей применяется в этой области. Согласно классической теории вероятностей, вероятность приписывается каждому элементу алгебры событий. Но в квантовой физике мы имеем дело с единичными событиями, которые имеют определенную вероятность, в то время как их конъюнкция такой вероятности не имеет"[115].



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-11-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: