Каждая частица проходит либо через щель 1, либо через щель 2. Tertium non datur (TND).
Сторонники так называемой квантовой логики не испытывают каких-либо затруднений, отказываясь от первой предпосылки. Действительно, на основе именно этого эксперимента Юнг пришел к выводу о волновой природе света. Но они (по причинам, в которые мы здесь не станем входить) отказываются от второй предпосылки - принципа классической логики - и полагают, что логика должна быть модифицирована.
Теперь еще раз обратимся к прозрачной и легко интерпретируемой "трехзначной" логике Райхенбаха[107]. "Трехзначной" он назвал ее потому, что в ней фигурирует третье значение - "неопределенно" - в дополнение к двум обычным значениям, которые приписываются высказываниям: "истинно" и "ложно". Райхенбах вводит следующую таблицу значений:
Таблица 1.
A | ~A | И - "истинно" | |
È | Í | Í | Н - "неопределено" |
Í | È | Ë | Л - "ложно" |
Ë | È | È |
В первом столбце перечислены все три значения A. Во втором столбце определено отрицание A, обозначаемое ; это отрицание не является, как в двузначной логике, строго контрадикторным по отношению к A. Отрицание, определенное таким образом, - произвольно выбранное определение, которое, как мы покажем, предназначено для выполнения замысла Райхенбаха - построить логическое исчисление, специально подобранное для квантовой механики. То же самое можно сказать о третьем столбце. Райхенбах называет отрицание, определенное в столбце 2, "полным отрицанием" ( ), а отрицание в столбце 3 - "циклическим" отрицанием (~A).
При помощи этой таблицы затем определяются пропозициональные операторы, соответствующие "дизъюнкции" и "импликации" - аналогам одноименных операторов, которые фигурируют в обычных учебниках пропозициональной логики. Их можно свести в таблицу:
|
Таблица 2.
А | В | Дизъюнкция А В | Альтернативная импликация А В | |
И | И | И | И | |
И | Н | И | Л | |
И | Л | И | Л | |
Н | И | И | И | |
Н | Н | Н | И | |
Н | Л | Л | И | |
Л | И | И | И | |
Л | Н | Н | И | |
Л | Л | Л | И |
Очевидно, что в строках 1,3,7 и 9 дизъюнкция совпадает с обычным определением. То же можно сказать об альтернативной импликации в тех же строках. В этих случаях A и B имеют только истинные и ложные значения.
Если теперь добавить к этой таблице определение эквиваленции: "Два высказывания эквивалентны, если оба истинны, оба ложны или оба неопределенны", то получим следующие эквиваленции в качестве тавтологий, то есть формул тождественно истинных в данной системе:
(3) .
(4) ,
(5) .
(Если A - истинно в (3), то ~~~A также истинно, по таблице 1; если A - ложно, то ~~~A - также ложно; если A - неопределенно, то ~~~A также неопределенно. Следовательно, эта эквиваленция истинна в любом случае, то есть тождественно истинна. То же можно сказать о (4) и (5), применяя таблицу 2.
Рассмотрим высказывание
(6)
Из (6) с помощью (3), (4) и (5) получим (7) Bv~B~~A. Из (7) следует (6), таким образом, (6) и (7) следуют друг из друга:
(8) .
Применяя табличные определения, можно выразить (6) следующим образом: если A истинно или ложно, то B неопределенно. Высказывание (7) читается: если B истинно или ложно, то A неопределенно.
Такое отношение между A и B полностью соответствует принципу дополнительности в квантовой механике. Например, "Если измерены координаты частицы, и результаты выражены в высказывании A, то A - истинно или ложно. Тогда высказывание B о том, что частица имеет такой-то импульс, принципиально неопределенно, следовательно, имеет значение "неопределенно", следовательно, (6) читается как: A дополнительно B; тогда (8) читается: если А дополнительно B, то B дополнительно A". Дополнительность симметрична, и эта симметрия (координат и импульса) есть эмпирический закон квантовой механики.
|