В табл. 1 представлены результаты пиролиза метана на железо- и никельсодержащих нанесенных катализаторах. Максимальные выходы наблюдались при 700 °С. Исключение составил Fe/TiO2 катализатор, на котором не отмечалось заметного отложения УНТ в интервале температур 600—800 °С.
Термогравиметрический анализ образца, полученного пиролизом метана, показал, что при нагревании катализатора с углеродными отложениями во всех случаях при температурах 550—650 °С происходит снижение массы навески, соответствующее количеству образовавшихся углеродных отложений. В этой области температур, на кривой изменения теплового потока наблюдался двойной пик, показывающий выделение тепла вследствие окисления многослойных УНТ и примесей аморфного углерода.
В табл. 2 приведены размеры частиц катализатора и диаметры полученных УНТ. На рис. 2, 3 показаны
Таблица 1 Выход углеродных отложений при пиролизе метана
Катализатор | Выход углерода, г/гметалла | |
600 °С 700 °С | 800 °С | |
Fe/TiO2 | 0 0 | |
Fe/Цеолит | 1,72 3,04 | 2,28 |
Fe/SiO2 | 2,98 6,20 | 4,24 |
Ni/TiO2 | 1,53 10,84 | 2,38 |
Ni/Цеолит | 6,10 66,00 | 15,35 |
Ni/SiO2 | 1,00 7,80 | 1,06 |
Таблица 2
Размеры частиц активных металлов в катализаторах пиролиза метана и диаметр УНТ
Катализатор | Размер частиц металла, нм | Диаметр УНТ, нм |
Fe/SiO2 | 20-100 | 30-150 |
Ni/Цеолит | 20-100 | 30-150 |
Ni/SiO2 | 30-100 | 30-50 |
Ni/TiO2 | До 100 | 50-100 |
Fe-Ni/цеолит | До 150 |
микрофотографии углеродных отложений на никель-содержащем катализаторе и катализаторе Ni-Fe/цео-лите. На рис. 2 б видна сложная структура нанотруб-ки. Четко обозначены графеновые слои, которые представляют собой вложенные друг в друга конусы («рыбья кость»). Канал нанотрубки перекрыт несколькими шапочками. На рис. 3 видно, что при совместном присутствии железа и никеля на катализаторе образуются как длинные УНТ, так и много графитовых фрагментов.
Полученные УНТ многослойные, имеют разный диаметр, длину и структуру. Никельсодержащие катализаторы оказались в наших экспериментах более активными. Это согласуется с обсуждаемым в литературе механизмом [8, 9], по которому разная активность железа и никеля обусловлена разными температурными интервалами устойчивости существования карбидных фаз в системах Fe-C и Ni-C. Согласно этой концепции, пиролиз метана как на Fe-, так и на Ni-содержащих катализаторах протекает через ряд стадий: разложение метана до карбида, диффузия карбида до места роста углеродных структур и дальнейший рост УНТ. Надо заметить, что при 450— 650 °С железо в атмосфере метана полностью превращается в цементит (Fe3C), который практически не катализирует разложение углеводородов. При 700 °С происходит разрушение цементита. Выше 700 °С начинается разложение Fe3C до Fe и углерода. В отличие от Fe3C разложение Ni3C начинается уже при 400 °С. При низкой температуре энергия активации распада карбида существенно больше энергии активации его образования. При высоких температурах скорость распада карбида превышает скорость его образования, и фаза карбида не образуется. Отложение углерода на металлах подгруппы железа происходит при повышенных температурах, когда карбиды этих металлов не образуются (для Fe и Ni эти температуры составляют соответственно 750 и 400 °С). Кроме того, энергия активации образования углеродных отложений из метана на железных катализаторах составляет около 200 кДж/моль, по сравнению с 90 кДж/моль на никелевых [10], что также сказывается на сравнительной активности катализаторов.
На катализаторах с одним металлом с повышением температуры выход УНТ проходит через максимум при 700 °С. Катализатор, содержащий никель и железо, показал более высокую активность при 600 и 800 °С по сравнению с катализаторами с одним активным металлом, при этом зависимость выхода углерода от температуры не проходила через максимум. Это может быть связано с тем, что два активных металла взаимодействуют друг с другом с образованием структуры типа интерметаллида, что сопровождается увеличением активности катализатора при 600 °С. Дальнейшее повышение температуры процесса может приводить к разрушению интерметаллической структуры, и активность катализатора снижается.
Таким образом, Ni и Fe могут быть рассмотрены в качестве модели конкурирующих активных металлов в процессах образования УНТ при окислительной и неокислительной конверсии метана. При совместном их присутствии (сплав SUS 304) образование наноуглерода в процессе парциального окисления метана происходит преимущественно за счет каталитической активности железа. Взаимодействие же Ni и Fe при неокислительной конверсии, в отличие от окислительной, приводит к синергическому эффекту — усилению активности по сравнению с катализаторами с одним активным металлом.
Список литературы
1. Арутюнов B.C., Крылов О.В. Окислительные превращения метана. М.: Наука, 1998, 361 с.
2. Rostrup-Nielsen Jens R., Sehested Jens, Nirskov Jens K. Adv. catal., 2003, v. 47, p. 65-141.
3. Пешнев Б.В., Караева А.Р., Французов В.К. Наука и технология углеводородов, научно-технический журнал, 2000, № 4, с. 83.
4. Dresselhaus M.S., Dresselhaus G., Eklund P.C. Science of Fullerenes and Carbon Nanotubes. Academic Press, 1996, 965 p.
5. Avdeeva L.B., Goncharova O.V., Kochubey D.I. e. a. Appl. Cat. A.: General, 1996, v. 141, p. 117.
6. Avdeeva L.B., Goncharova O.V., Kochubey D.I. Chem. of Sun-stainable Development, 2003, v. 11, p. 239.
7. Rakov E.G., Ivanov I.G. e. a. Fullerenes, Nanotubes, and Carbon Nanostructures, 2004, v. 12, № 1—2, p. 29—32.
8. Чесноков В.В., Буянов Р.А. Успехи химии, 2000, т. 69, № 7, с. 675.
9. Ermakova M.A., Ermakova D.Yu., Chuvilin A.L., Kuvshi-nov G.G. J. Catal., 2001, v. 201, p. 183.
10. Раков Э.Г. Успехи химии, 2000, т. 69, с. 41.
Для подготовки данной работы были использованы материалы с сайта https://www.chem.msu.su/