ВВЕДЕНИЕ
Понятие «интеграл» непосредственно связано с интегральным исчислением − разделом математики, занимающимся изучением интегралов, их свойств и методов вычисления. Вместе с дифференциальным исчислением интегральное исчисление составляет основу математического анализа.
Так как целью курсовой работы является изучение интегрирования и дифференцирования вектор функций.
Для достижения цели необходимо решить следующие задачи:
ü Найти и изучить литературу по данной теме;
ü Изучить основные понятия вектор функции;
ü Изучить интегрирование и дифференцирование вектор функции.
Объектом исследования являются различные виды вектор функций.
В работе использованы следующие методы исследования:
1. Анализ научной литературы по теме «интегрирование и дифференцирование вектор функций»;
2. Синтез полученных знаний;
3. Обобщение полученных знаний.
Понятие вектор функции
В курсе математики и ее многочисленных приложениях часто приходится иметь дело не только с числовыми функциями, но и с функциями, у которых область определения D или множество значений E состоят из элементов другой природы, например D R, а E – подмножество множества векторов.
Векторной функцией действительного аргумента (вектор-функцией скалярного аргумента) называется отображение, которое каждому действительному числу t T R ставит в соответствие один и только один вектор трехмерного пространства R3.
Обозначается: a= a(t), t T.
Различным значениям t T соответствуют разные значения вектор-функции, т.е. векторa = a(t) имеет определенную длину (модуль) и определенное направление. Следовательно, векторa r = ar(t) может изменяться как по величине, так и по направлению.
Если каждому значению параметра из некоторого промежутка отвечает определенный вектор
(зависящий от
), то вектор
называется векторной функцией (кратко вектор-функция) от скалярного аргумента
и в этом случае пишут:
(1.1)
При изменении аргумента вектор
изменяется как по величине, так и по направлению. В дальнейшем будем предполагать, что
изменяется в промежутке, конечном или бесконечном.
Будем считать, что вектор исходит из начала координат, т.е.
− радиус-вектор некоторой точки
. В этом случае при изменении параметра
конец вектора
опишет линию
, называемую годографом векторной функции
. При этом начало координат называют полюсом годографа. Уравнение (1.1) называют векторным уравнением кривой
(рис. 1.1).
Если у вектора меняется только модуль, то годографом его будет луч, исходящий из полюса. Если модуль вектора
постоянен и меняется только его направление, то годограф есть линия, лежащая на сфере с центром в полюсе и радиусом, равным модулю вектора
.
Рис. 1 Вектор - функция
Если через обозначить проекции вектора
на оси прямоугольной декартовой системы координат в пространстве, то эти величины для каждого значения параметра
в свою очередь принимают определенные числовые значения и поэтому являются скалярными функциями скалярного аргумента
:
,
,
. (1.2)
И тогда
. (1.3)
Таким образом, задание векторной функции скалярного аргумента равносильно заданию трех скалярных функций того же аргумента. Т.к. уравнение (1.1) является уравнением некоторой кривой в пространстве, то ту же кривую задают уравнения (1.2). Уравнения (1.2) − обычные параметрические уравнения кривой в пространстве.
Предел, непрерывность, производная вектор функции
Пусть вектор-функция определена в окрестности точки
, кроме самой точки
.
Вектор называется пределом векторной функции
при
(или в точке
), если
. (1.4)
Если есть предел функции
при
, то это записывается так
. (1.5)
Если записать векторную функцию и вектор
в проекциях
,
,
то получим
.(1.6)
Тогда из равенства (1.4) следует, что
,
,
.(1.7)
Свойства вектор-функции:
1. Если , то
.
2. .
3. ,
− скалярная функция.
4.
5. .
Вектор-функция , определенная в некоторой окрестности точки
, называется непрерывной в точке
, если
.
Из равносильности (1.4) и (1.7) следует, что для того чтобы вектор-функция была непрерывной в точке
, необходимо и достаточно, чтобы в этой точке были непрерывны функции
.
Введем понятие производной векторной функции
. (1.8)
Предполагаем, что начало вектора находится в начале системе координат (рис. 1.2).
Возьмем фиксированное значение параметра, соответствующее какой-либо точке определенной точке на кривой, заданной уравнением (1.8), и дадим параметру
приращение
. Тогда получим вектор:
,
который определяет некоторую точку . Найдем приращение вектора:
(1.9)
На рисунке, где ,
. Вектор приращения определяется вектором
.
Рассмотрим отношение приращения вектор-функции к приращению скалярного аргумента; это есть вектор коллинеарный с вектором
. При этом вектор
в сторону, соответствующую возрастанию параметра
.
Далее с учетом (1.9) вектор можно представить в виде
. (1.10)
Если функции имеют производные при выбранном значении параметра
, то множители при
в равенстве (1.10) в пределе при
обратятся в производные
.
Значит, .
Вектор, определяемый последним равенством, называется производной от вектора по скалярному аргументу
. Ее обозначают
или
. Итак,
. (1.11)
Выясним направление вектора . Заметим, что при
точка
стремится к точке
и поэтому секущая
стремится к касательной в точке
. Отсюда, производная
является вектором, касательным к годографу вектор-функции
, направленным в сторону, соответствующую возрастанию параметра
.
Из (1.11) следует, что
. (1.12)
Дифференциал длины дуги кривой равен
,
откуда
. (1.13)
Из (1.12) и (1.13) имеем
. (1.14)
Таким образом, модуль производной вектор-функции равен производной от длины годографа по аргументу
.
Правила дифференцирования вектор-функции:
1. Если - постоянный вектор, то
.
2.
3. , где
-скалярная функция.
4. ,
скалярное произведение.
5. ,
векторное произведение.
Последовательным дифференцированием можно найти производные высших порядков
и т.д.